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PREFACE

Preparation of this handbook was begun in 1965 with ONR sponsorship

S4 [contract NONR 2216(20)] under the direction of Dr. William Van Dorn

of Scripps Institution of Oceanography, University of California. The

work was completed at the offices of Tetra Tech, Incorporated in
Pasadena under the joint authorship of Dr. Van Dorn and Drs. B. LeMe'haute'

and Li-San Hwang because of the extensive experience and contributions of

the Tetra Tech staff in the field of explosion-generated waves.
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"FOREWORD

The problem of water waves generated by underwater explosions became

of conceptual importance with the inception of atomic testing in a water

environment. Initial interest in waves was primarily to appraise them as

an adjunctive hazard to such testing. However, as large thermonuclear

devices were developed, questions arose as to the tactical and/or strategic

implications of the wave sys'tems that were produced. Thus, even during

current testing moratoria investigation of these problems has continued.

The first problem systematically attacked was that of coastal damage due

to large explosion-generated waves, since, by analogy with the well-known

phenomena of tsunami waves generated by earthquakes, it was initially

hypothesized that the explosion of large atomic weapons at sea could result

in considerable coastal damage by wave run-up and/or flooding.

Later, as theoretical and experimental studies revealed the relatively in-

efficient wave making potential of large explosions, and that in many cases

"most wave energy is dissipated by breaking on the continental shelf before

reaching shore, concern over run-up per se was replaced by the realization

that other more serious wave problems exist. Accordingiy, recent em-

phasis has been directed towards assessing the nature of the breaking wave
regime offshore and its implications on the vulnerability of ships and under-

sea structures to breaking waves in relatively deep water (100 feet). These

studie3, in turn, have indicated more refined secondary probiems. These
include harbor oscillations induced by cumulative wave action offshore, and

anomalous wave-induced clogging or erosion of harbor entrance channels by

sediment transport.

Most of tlese problems are amenable to analysis, and present techniques

have been developed for gross wave predictions over fairly complicated

topography that are in good agreement with experimental and field test

results. But increasing prediction accuracy requires, unavoidably, in-

creasing environmental detail and consequent complexity of treatment.

It is to be emphasized that there is no cut-and-dried shortcut to accurate

xiii
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prediction, and each case of importance must be considered as a separate

problem.

This report seeks to present to the non-disciplinary educated scientist a

procedure for wave predictions based upon the state-of-the-art in the field

of explosion-generated waves. Rather than attempting to assemble all the

advanced hydrodynamic theories related to the explosion-generated waves,

which have been carried out during the past decade, careful selection has

been made with the aim of presenting the minimum amount of information

necessary to justify the conclusions reached without sacrificing logic.

Second-order effects, even though sometimes thoroughly investigated

elsewhere, have been neglected in this presentation when they do not

significantly alter these conclusions.

A specific background in hydrodynamics and water waves would indeed

be necessary for more exhaustive analysis than that presented here, and

the reader who wishes to study the subject in depth is directed to the

abundantly referenced material.

It is to be hoped that the accumulation in one report of widely scattered

information will permit the reader a basic understanding of the state-of-

the-art, and also permit efficient orientation of further research on un-

answered questions which are of interest to the Department of Defense.
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CHAPTER I -INTRODUCTION

GENERAL CHARACTERIS3TICS OF EXPLOSION-

GENERATED WAVES
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I-1 GENERATION HYDRODYNAMICS

Anyone who has witnessed a pebble being tossed into a large shallow

pond is familiar with the type of wave system set up following its impact

with the free surface. Rings of waves spread out over the surface, each

propagating radially ou'ward until the margins of the pond are reached,

after which the individual crests are either reflected in a rather complicated

manner or are absorbed by breaking and/or viscous dissipation on the

sloping shore. Except for secondary details and an enormous difference

in scale, this phenomenon is a perfect analog to the wave system produced

by a large explosion in the sea. Indeed, the present best estimates of the

waves and wave effects to be expected from very large nuclear explosions

are obtained from observational data on the waves produced by explosions

on a much smaller scale, together with a generalized hydrodynamic model

to which the appropriate scaling factors can be applied.

Basically, the wave system is produced by the attempts of the free sur-

face to restore itself to its original level under gravitational forces,

following the deformations and velocities imparted to it by the explosion.

While the wave system, once formed, can be considered to conserve

energy during its subsequent development, the generation process appears

to be extremely non-conservative, in that only a small fraction of the total

available thermal energy of the explosion emerges in the form of organized

wave motion. This fraction appears to increase slowly with the absolute

energy of the explosion. It is sensibly negligible for explosions relatively

high above or far beneath the surface, and reaches a maximum of a few

percent for those in the immediate vicinity of the surface.

As much as 50% of the thermal energy available in a submerged (nuclear)

explosion is lost as irreversible heating or shock in the water during the

first bubble expansion. All of the remainder, (excepting that small fraction

appearing as wave motion) appears as disorganized turbulent motion, and
later is dissipated as heat. These phenomena are readily observable for anex-

plosionat shallow depthbythe successive appearances of the massive spray

2



dome, column, plume, and base surge as precursers to the issuance

of waves from the central region. For very deep explosions the turbulence

is generated within the violent toroidal circulation associated with suc-

cessive bubble pulsations, and there may be very little surface mani-

fe station.

For explosions above the surface, the percentage of energy effective in

water wave generation is << 11% and decreases with burst height. Attempts

to explain wave generation from air bursts theoretically have been largely

unsuccessful.

Fortunately, however, certain observable features of both chemical and

nuclear explosions have been found to be scaleable in terms of power

functions of the explosive energy release. It has also been found possible

to express a linear theory for wave generation in terms of similar functions.

This theory, when normalized to a given set of experimental data, adequately

predicts the wave characteristics observed from other experiments on

much larger scales, provided that geometric similitude is maintained.

Enough experimental data for surface and subsurface chemical explosions

(1/2 - 14, 500 Ibs, TNT equivalent) now exists to normalize the theory to a

wide range of initial conditions. The extension to nuclear tests where wave

measurements were conducted is, however, limited to two deeply submerged

explosions in the kiloton range (Wigwam and Hardtack Wahoo), several megaton

range surface shots within an atoll (Operation Redwing), and a number of

high-altitude megaton-range shots over the open sea (Operation Dominic).

Although the accuracy of the wave measurements for the deep tests was

Sli very poor, the best estimate of the maximum wave heights was well within

the confidence limits for scaled chemical explosions, under similar geo-

metries. This suggests that the wavemaking efficiencies of submerged

nuclear and chemical explosions do not differ significantly. Although there

is no comparable chemical data for the surface (atoll) and high-altitude

tests, the effective surface loading (pressure-time history) is known to be

very different in the two cases. Therefore, one suspects that the scaled-

3
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up results from chemical explosions in the atmosphere would not be a

reliable guide to nuclear effects in the same geometry. However, the

largest previous air-bursts have produced surface displacements only

of the order of inches directly below the shot point and a maximum of a

foot or so at any shore location. Since it is known that air-impulse effects

scale very well, no wave effects of critical civil or military importance

are to be expected from air bursts as large as 100 megatons. For this

reason, waves from air-bursts will not be considered further in this

context.

The appropriate scaling for nuclear surface explosions is at the same

time the most critical and the most uncertain. This is because of an

anomalous high peak in the curves of reduced maximum wave height

versus charge depth for chemical explosions at the surface - a phenomenon

which currently has no sound physical explanation - together with the

mixed boundary condition that chemical scaling apparently works in water

but not in air. There appears to be no reliable guide to selecting the

best scaling coefficient, since predictions for cratering by nuclear devices

in solid materials suffer from precisely the same lack of experimental

information. Therefore, pending further experiments, it will be assumed

that surface nuclear explosions will produce effects identical with those

from chemical explosions scaled in the conventional ratio of I kilo-calorie/

gram TNT equivalent.

Despite the fact that extensive efforts have not provided a quantitative

picture of surface and subsurface explosion hydrodynamics, enough in-

formation exists to put together a fairly consistent qualitative picture.

Some discussion of the mechanism is appropriate here for completeness,

even though no direct physical connection with the generation model,

described later, can be defended.

To begin with, we neglect any consideration of hydroacoustic shock

effects in wave formation, except to note that energy going into shock

4



is considered to be irreversibly lost and unavailable. The percentage

of total available thermal energy lost to shock varies from a minimum

of about 40% for a surface explosion to over 90% for a very deep one,

wherein several bubble pulsations may have occurred (Kot, 1964).

Secondly, ignoring any intrinsic difference in the nature of the explosive,

an explosion anywhere within the water column produces a cavity in the

water. The shape and subsequent time-history of the cavity depends upon

the absolute energy release, the depth of the detonation point beneath the

free surface, and the proximity of the bottom. In the absence of boundaries,

the explosion cavity tends to spherical symmetry. However, this symmetry

is vertically more and more distorted the closer the proximity of the free

surface, owing to the hydrostatic pressure differential across the cavity.

If the cavity vents before reaching its maximum expansion, the resulting

crater will be approximately parabolic in section at early times. Since

this differential will be least for small explosions because of atmospheric

pressure, the corresponding cavities will approach spherical symmetry at

relatively shallower charge depths than those from large explosions. The

characteristics of explosion cavities at reduced pressure have been

modeled in detail on a small scale by Kaplan and Goodale (1962).

In contradistinction to explosion cavities in solid materials, where the

ultimate cavity size is limited by the rigidity and compressibility of the

medium, a water cavity can continue to expand under inertial forces alone,

ever after the internal pressure has dropped below the local hydrostatic

pressure. As a result of the differential pressure across the cavity, the

bottom of the cavity will reverse direction and begin to move inward

(upward) in advance of the sides and top, respectively. Thus there is a

general tendency for the cavity to turn inside out, or evert, during the

ensuing collapse phase, leading to the formation of a jet that is strongly

accelerated vertically upwards by the potential field of the collapsing

cavity (Ash and Eichler, 1964).

The subsequent history of the jet appears to depend rather intimately on

the initial charge depth, but for situations important from the point of

5
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wave production, it penetrates through the surface, emerging as a dense

vertical column of water, often enshrouded in a spray plume of explosion

products and water thrown up directly by the initial cavity expansion.

Upon falling back under gravity, the column degenerates into a turbulent

and unstable mound of water which, at some undefined point, might

be considered as the mathematical precursor to the formation of

water waves. As might be expected, either displacement of the charge

to great depth or the introduction of a rigid bottom in close proximity

beneath the charge acts to inhibit the formation of a substantial water

column, and hence, the formation of large waves. However, the resulting

wave spectrum will be quite different in the two cases cited.

Students of this complicated subject will recognize the considerable over-

simplification of the true state of affairs in the above description. How-

ever, most of these phenomena are readily observable in small-scale

laboratory experiments, wherein hemispherical charges are detonated

against a glass plate, which acts as a transparent half-space, through

which the ensuing cavity history can be recorded with high-speed

photography (see Fig. 11-2).

ia
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1-2 EXPLOSION WAVE CHARACTERISTICS

For a discussion of the wave system produced by an explosion, we refer

again to the analogy of the pebble tossed into a pond. This also exhibits,

sequentially, a cavity, an everted jet that collapses into a mound, followed

by rings of waves spreading over the surface. In the mathematical sen3e,

all of these waves originate within the same central mound (or depression)

and are sirmultaneously released to propagate radially ouitward in their

characteristic and familiar pattern. If the water depth is everywhere uni-

form, or relatively very deep, the pattern will be perfectly circular, and

consists of concentric rings of crests and troughs, bounded at the outside

by an intangible "front", that expands outward at the limiting velocity

c = , for free gravity waves in water of depth h (g = gravity). All

subsequent waves travel more slowly. At any instant of time the radial

separation between successive crests (wavclength) is largest near the front

and progressively smaller towards the center. All individaal waves of the -

system retain their identity, although the total number of waves present in-

creases with time, as if they were being pulled like an accordion bellows

out of a black box that comprises the source region.

In general, no two waves of the system are of the same size, nor does
the amplitude of any wave remain the same from place to place and time

to time. Within this everchanging pattern the energy distribution among

waxes is manifested by amplitude modulation of the wave train in a manner

which is determined by the nature of the source, its distance from the

point of observation, and the depth of water. As the pattern expands, the

amplitudes of all the individual waves are, on t!%e average, diminished

because the wave system contains a finite and constant amount of energy

which is diffused with increasing time or distance. This effect can be

resolved into two factors: dispersion, due to the increase in wave length

and number of individual waves; and geometric expansion, caused by the

increase of crest length necessary to circumscribe progressively larger

radii.
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Most of these features are well illustrated in Fig. 1- 1, which shows

three successive stages in the development of an explosion-generated

wave train. The vertical and horizontal axes in this figure are dimen-
sionless distance R = r/h and dimensionless time T t respec-

tively. This diagram is therefore appropriately called an R-T diagram.
The three computer-generated oscillatory curves show the amplitude-time

histories of a wave train generated at the origin as they would be recorded
at the non-dimensionaldistances, R = 2, 4, and 6. The symmetrical dashed

curves bounding the wave trains, comprise the wave envelope, and serve to

define the distribution of energy within the train. The precise shape of Lhe
envelope depends upon the initial source conditions, whereas the space-time

coordinates of the individual waves are independent of the source and depend
only on the water depth. A characteristic of the wave envelope is that any

identifiable portion of it - say, a node or antinode - propagates at uniform

velocity, as shown by the straight lines o-a connecting the origin with the nodal
points delimiting the beginning (wave front) and o-b ending points of the first
envelope maximum in Fig. I-1. In contradistinction, the space-time

trajectories of all waves of the system are curves, concave upwards, be-
cause the waves are continuously accelerating towards the limiting phase

velocityco= /gh of the wave front. Thus the waves travel faster and pass

-"irough the successive nodes of the wave envelopes, and therefore there

are progressively more waves in each envelope segment with increasing

time or distance. For large explosions in the deep ocean, by the time the

wave system has traveled a distance equivalent to 300 water depths, there

will be more than 100 waves between the front and the first nodal point.

A second important feature of the wave envelope is that its amplitude, as

measured along any straight line through the origin of the R-T diagram, is

inversely proportional to its distance from the origin. Thus the height of
the highest wave in the upper wave train of Fig. I-I is about 1/3 that of

the corresponding wave in the lower train, the latter having traveled three
times farther. The above features, together with the experimentally de-

termined result that the linear dimensions of explosion cavities scale
over large ranges as a power function of the yield, results in the often

used and over-simplified expression:

8
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Hr/Yp = F

where H is the wave height, usually taken at the first envelope maxi-

mum (i. e. , the highest wave in the train), r is distance from the explosion,

Y is the charge weight (yield), F is an empirically determined function of

charge depth and water depth (relative to the charge weight). According to

scale law the exponent p is one-half for a small explosion in a deep, per-

fect fluid with no atmosphere. The most reliable experimental results
give a somewhat higher value (p = 0. 54), possibly owing to the prior-

mentioned hydrostatic pressure difference across the explosion cavity,

which increases with yield.

Now in nature the water depth is rarely uniform and since the propagation

speed of individual waves depends in a rather complicated way upon the

water depth and the local wave length (itself an implicit function of depth),

the initial symmetry of the wave pattern soon becomes somewhat distorted,

the shallower portions being slowed down. This effect, analogous to phase

distortion in optics, is most marked at the outer margins of the pattern.

Here, the longer wavelengths are more sensitive to depth variations than

the shorter waves near the center. As in optics, the influence of any small

topographic irregularity (compared with the local wavelength) is averaged

out, and only larger features can appreciably alter the symmetry.

Under these circumstances the wave system development can no longer

be simply presented on a dimensionless R - T diagram. Its behavior and

characteristics at any time and place must be calculated step by step

over the real topography. Since these calculations depend upon the local

wavelength, the results are no longer scaleable in terms of yield unless

the water depth is relatively deep in comparison to all wavelengths of interest.

These physical wave characteristics can be summarized as follows:

1. The waves travel radially from the location of the explosion.

2. At a given location they appear as a succession of waves of

decreasing period.

3. Wave amplitudes vary with time so that they appear as a

10
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succession of wave groups, the number of waves per

successive group decreasing towards a constant limit.

4. The period of each wave increases with distance traveled.

5. The number of waves per group increases with distance.

6. The length of a group increases with distance.

7. The average wave height in a group decreases with dis-

tance traveled.

8. The period of the maximum wave in a group is constant.

9. The maximum wave height of successive groups at a

given location decreases with time.

While the relative variation of wavelength with distance is a significant

feature of dispersive waves in deep water, this variation becomes less

pronounced in shallow water and with distance. Relative variation of

wave period from one wave to another also decreases with decreasing

depth or distance from the explosion. For these two reasons, the waves

generated by a large deep water explosion far from the continental slope

can be treated as a succession of quasi-periodic waves on the slope

and shelf. If the explosion is near the slope, the dispersive effect Ii
is still significant so that the variation of wavelength across the slope

must be considered.

-LI
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1-3 WAVES ON THE CONTINENTAL SHELF AND COASTAL EFFECTS

When the waves approach the continental slope, a small part of the

energy of the leading waves is reflected seaward. A fairly accurate

estimate of the reflection coefficient can be made by assuming that each

wave behaves as a periodic wave of the same period. From a hydro-

dynamic viewpoint, continental slopes are so gentle that, for most

practical purposes, conservation of energy flux obtains, and reflections

can be ignored.

As the waves from such a system approach the shoreline and pass into

shallow wate:, the individual wave amplitudes tend to become larger

and their length shorter as the energy increment within each wave is

concentrated in an increasingly smaller volume of water. This effect

opposes the tendency for waves to become smaller because of dispersion

and geometric spreading, and there will therefore exist for each wave

of the system a minimum amplitude at some point in its history. Even-

tually, as shoaling and wave growth continue, the local wave amplitude

will amount to an appreciable fraction of the water depth. In this "shallow

water" regime, additional modification of the wave system is brought about

by amplitude distortion, which is nonlinear, has no precise parallel in

optics, and is due to the fact that the phase speed of a free gravity wave

in very shallow water is also a function of wave amplitude, a higher wave

tending to travel faster than a smaller wave of the same length.

In shallow water, nonlinear effects become important, and some damping

is produced by bottom friction. Due to convective inertia, the individual

wave profile may become unstable, each wave subdividing into a succession

of two or three undulations, which travel either as solitary waves or as

undular packets separated by long flat troughs. Ultimately, as shoaling

and wave growth continue, each wave becomes unstable and, depending on

its steepness and the bottom slope, either breaks or surges up upon the

shore.

Wave behavior in the immediate vicinity of the shore is very complex,

12
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depending not only upon- the slope and curvature of the shoreline, but

also upon the history of each previous wave in the train, such that, in

general, the point of breaking and the extent of local run-up are unique

for every wave and for every point along the shore. Moreover, even

more than with offshore propagation, these effects are not scaleable in

terms of charge weight because the local effects depend upon the absolute

wave height and length near shore. For this reason any prediction

method must consider each critical area of the coastline independently,

and calculate enough different situations so as to be sure to bracket all

critical conditions, before general statements can be made about sus-

ceptibility to wave attack from large explosions.

Aside from the direct effects of run-up on the shore, large explosions

can, under appropriate circumstances, produce very large waves in

deep water, which may break upon the continental shelf many miles from

shore. Since the wave spectrum for large explosions is peaked at wave

periods substantially longer than the longest prevailing swell or surf,

the net result is the creation of a breaker zone covering a very large

area, and which can persist for several hours. Such waves could pose

unusual and potentially severe problems to coastal navigation, not only

through direct dynamic effects, but also because of cumulative effects

such as inducement of resonant harbor oscillations and the scouring or

deposition of sediment in regions ordinarily immune to normal storm

conditions.

13
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CHAPTER II

WAVE GENERATION MECHANISM
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11-1 THE SOURCE MODEL

The theory for wave generation by explosions is not really a physical

theory, but a mathematical model, based upon highly idealized source

conditions that, having been once adjusted to describe the time variations

of water surface elevations as observed at some point not too close to the

source of an actual explosion, will thereafter reasonably predict them at

any other distance or time. This mathematical model is scaleable in

ternms of explosion energy (yield). Since, however, it is manifest that

the v~olent motions imnediately following real explosions in water are

not converted entirely into waves, no physical reality can be ascribed

to the initial conditions assumed for the model, except to state that the

same wave system would have resulted. Thus the choice of initial conditions

is arbitrary to the extent that several model solutions can be forced to fit an

observed wave train, and the particular solution presented here is only one

of several proposed in the literature, although it appeals because of its

mathematical simplicity.

The most general treatment is that of Kajiura (1963) although Kranzer and

Keller (1959) have given a class of axi-symmetric solutions. (See also

Van Dorn (1964), Whalin (1965), Hwang and Divoky (1967), for applications.

In all such solutions, the wave train is considered to have originated from

within a bounded disturbed region where the distribution of some forcing

function within the region is the known initial condition. The function

can be an initial elevation or depression of the surface, an impulse

on the free surface, a given velocity distribution, or any combination

thereof. Solutions also exist for functions that are time-dependent, al-

though these have not been studied so extensively. But regardless of the

form assumed for the initiating disturbance, it is treated thereafter as

a problem of inviscid, incompressible potential flow, in which the re-

suiting wave system may be thought of as a spectral continuum that can be

p subdivided into component frequencies w, each of which propagates radially

at its characteristic group velocity v in water of depth h(r, e) given by
1
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v dw/dk = V(gk" tanh kh)} (1 + 2kh/sinh 2kh) (TT-I)

which is obtained by direct differentiation of the equation

2

t2 = gk tanh kh, (11-2)

where kis the wave number, r and 0 are polar coordinates. Consideration of Eqs.

(II- 1) and (1U-2) reveals that, in general, low frequencies propagate fast' r than

high frequencies, asymptctically approaching a limiting value v -4 /g-h

as --+ 0. Thus the individual frequency elements are separated as they

travel away from the source, which process has been given the name

dispersion.

The distribution of energy among frequencies is determined by the spatial

dimensions of the source and/or its speed of occurrence (intensity),

tending to be maximized at a frequency corresponding to a wavelengt.

L = 2 rr /k which is of the order of the spatial dimensions of the source in

a given direction. Hence, a crude method of determining the source

dimensions consists of observing which frequencies dominate the spectrum

made from a recording of the wave train at a distance.

At any instant of time, a three-dimensional physical model of the energy

distribution might consist of two identical, elastic spider webs placed one

above the other and separated by a vertical distance corresponding - at

every point - to the square root of the local energy density. The peripheral

strands of the web can be likened to the instantaneous positions of discrete

adjacent frequencies all propagating outward in. the directions indicated

by the radial arms of the web. The total energy in the system which can

be thought of as subdivided by the web into discrete patches is (Van Dorn. 1965)

E g 0 H dedw= constant
•'• 0

where H is the vertical web separation, or the height any wave would hav'

if it occupied that region of space at the particular time in question, p is

density and d8 dw is the patch area. At a later instant of time the webs have

16
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been stretched to a greater radius in all directions, with a corresponding
reduction in the spacing between them, since the total energy is constant.
Such a "quantization" of the energy into patches (hydrons) has been proposed
by analogy to the phonons of acoustic radiation (Synge, 1962).

The velocity of the leading disturbance (w = 0) is given by

iv = Jg -1(M4
({II..4)

The energy, of course, is manifested by an annular gravity wave system,
interposed between the web meshes such that the crests and troughs just
touch the webs. The individual waves of the system travel at a character-
istic phase velocity given by

c = W/k = (gk'tanh kh) (-5)--- t
Comparing Eq. (II-1) with Eq. (II-5j, it is apparent that, in general,
c >v, but that v -*c -• Vgh as ua-> 0, and therefore the waves travel

faster than the energy patches given by the web elements. Equation (II-5)

has solutions of the form

cos Zrr (wt - kr - CD) = constant (11-6)

where r is the space coordinate of a particular wave phase at time t,
and cp is a phase parameter which, depending upon the initial source
conditions, ranges from 0< < T7/2. If Eq. (11-5) is integrated with the
aid of Eq. (11-6) to obtain the trajectory of a particular wave in a space-
time coordinate system, it will be found that, as this wave accelerates
past the slower-traveling patches, it will always possess, instantaneously,
the frequency and wave number appropriate to the patch it is passing.
ALl of the foregoing properties are very elegantly compressed into the

two equations relating the pertinent variables (see Kinsman, 1965):

1
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which c-in be derived very generally !romn the linear theory of dispersive

waves. These equations give the dietrioution of wave number and fre-

quancy in the R-T plane.

Consider now the particular example of an initial surface deformation
of height H (R, P), where H is small compared with the uniform

0 0
water depth h (Fig. U-1). Taking the origin of polar coordinates within
the disturbed region, the resulting local anomaly of surface elevation

71 (R. T) can be shown to be (Kajiura, 1963)

27T
il(R, T) C CO T f0 f fl0 (R, O)Jo(cR) R d R dG da (11-8)

where the following quantities have been nondimensionalized in terms of h:

R = nh (distance) = wVii7j Vatanha (frequency)

T = t ,/ -Th (time) V =v/Vg/ih (group velocity)

= kh (wave number)

Equation (11-18) requires the evaluation of three integrals. The second

and third integrals represent the summation of contributions from an
infinite number of point sources having polar diimensions dR and d@
and height , while the first integral is the lankel transform of

the initial deformation If we now restrict our attention

to cases where the disturbance has circular symmetry with respect to
the origin of the explosion (a single explosion), Eq. (11-8) can be reduced

to

18
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ty (R, T)= accos (CT)I OM)JO 0 (R o) dc 119
0

where

0o) f = Ho(R) Jl(R o) R dR (II-10)
0

is the zero-order Hankel transform of the initial elevation 14(R). The

integration of Eq. (11-9) in a can now be performed by the approximate

method of stationary phase, giving results that are valid everywhere

except near the source.

ti(R,T) = o.(a) (d/da cos (oR - OT) (Il-li)

The evaluation of the remaining integraL, I (c), in (II-11) can be per-

formed algebraically if the function H (R) falls within a restricted listS~0
of those having known Hankel transforms, although it is possible on a

computer to take the numerical transform of an arbitrary function. There

are enough transformable functions, however, to construct approximate

solutions for almost any form of Ho(R) from sums and differences of

these functions, although the result may not satisfy the continuity re-

quirement that no water is added or lost by the assumed disturbance,

viz,

2rr H (R)dP = 0 (II-I2)
f 00

0

While a number of source models (Whalin, 1965, and Van Dorn, 1964)

have been studied, the procedure followed has been essentially the same.

The accuracy of the asymptotic solution has been carefully examined
and found to be much better than one would ordinarily suppose from the
assumptions involved (Whalin, 1965).
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One makes a guess as to the most appropriate transform from the shape

of the observed wave spectrum, and computes a number of small varia-

tions until the best fit is obtained. This result is ther. compared to the

results of other wave experiments and further modified, if desired. At

the present writing, an initial function that satisfies the above require-

ments and which results in solutions that can be normalized to closely

resemble the wave systems from actual explosions under widely varying

geometries is given by

(R) [2(R/Ro) 2  1 R!R

= 0 R >R (RI-13)
0

where b is called the cavity height and R is the cavity radius.

This function consists of a parabolic cavity superimposed

upon a cylindrical elevation.. Perhaps coincidentally, this shape

physically resembles the free surface deformation observed at early

times in small-scale model photographs of near-surface explosions

(Fig. 11-2). Its transform I (a), easily derived from known functions,
0

is

bR
I° (a) - 0 J3(aRo) (11-14)

and the final form of the solution becomes

bRo V/o-
n(R,T) J (R a) cods (aR- T) (11-15)

R d v~da 3 o

This equation is most easily evaluated numerically by assigning succes-

sively equal increments to the wave number C, and performing the

indicated computations iteratively for each increment. The time of

arrival of each wave number increment at a given radius, and the corres-

ponding wave period at that time, are then explicitly determined by the

definitions of group velocity and frequency.

The above form of the solution has interesting properties, in that wave

21
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Figure 11-2 A High Speed Photograph of Initial Cavity Shape

Taken Under the Following Conditions:

Charge Size 0. 175 gram. TNT Equivalent

Ambient Pressure 0. 003 Atmosphere

Charge Depth 2. 0 inches

Bottom Depth 60. 0 inches

(Photography by courtesy of URS)
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amplitude (spectrum) and wave position (phase) at any time are given

by separate factors, either of which can be computed independently.

This fortuitous circumstance allows us to predict the local wave height

at any time or place without having to worry about the waves at all,

although the latter can be put in later, if desired. Since the phase

function contains no information about the source disturbance, the

wave system is immutable, depending only upon the (constant) water

depth. That is, from a given point of observation, the same wave sys-

tem will be produced by any (symmetrical) disturbance whatever, and

only the height of the waves depends on the source conditions.

The general features of this solution were shown in the R - T diagram

of Fig. I-I, where three consecutive time histories n (t) of the same

wave train were computed for the (fixed) distances R = 2, 4 and 6,

respectively, as it has been discussed previously. The time scale

of this figure has been compressed so as to better proportion

the wave envelope dimensions. Wave amplitude, while plotted

in the R-direction, should be recognized as normal to the plane. With ref-

erence to Eq. (1- 15), at each stage of its development the wave system consists

of an oscillatory wave train where both amplitude and frequency are

varying with time. The frequency variations are governed by the phase

factor, which has a maximum at the wave front, indicated by the straight

line so labeled passing through the origin. However, the wave amplitude,

governed by the amplitude spectrum, is zero at the front, increases

smoothly to an initial - and highest - maximum; and oscillates thereafter
in accordance with the Bessel Function J3 (Roa), as indicated by the dashed

lines bounding the wave patterns. Succeeding nodal points in the three

envelopes correspond to the zeros of J 3 , and can be connected by other

straight lines, the slopes of which give the local values of group velocity.

These lines can also be thought of as joining regions of constant frequency

and wavelength, as well as boundaries delineating zones of constant total

energy.

The local wave amplitude, governed by the magnitude of the amplitude

23
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function along any such line, varies inversely with time or distance,
owing to the factor R" in Eq. (11-15). This factor should more
properly be written R-1. R-•, the first factor being due to geometric
spreading of the wave pattern, and the second due to dispersive separa-
tion of adjacent frequencies.

The trajectories of individual waves, two of which are shown in this figure
(oc and od) by dashed lines connecting consecutive positions of corresponding
wave crests, are parabolic curves in this representation, because the
"phase velocity of a wave of a given frequency or wavelength is greater
than the group velocity everywhere except at the wave front. As a result,
individual waves tend to propagate through the envelopes giving the energy
distribution, as already described, thus crossing lines of constant group
velocity (and frequency). They have the interesting property that, while
the period and wavelength of the waves passing a fixed point of observation
continuously decrease with increasing time, they both appear to increase
with time to an observer traveling at wave speed. Siuce no wave can ever
catch the one ahead, the net result of these differential motions is to
accumulate more waves between any two group velocity lines with increas-
ing time and distance; that is, within any proportional segment of the wave
envelope.

If it seems surprising that we have not, until now mentioned either the
wave period or the wavelength, which, together with the wave amplitude,
comprise the three most physically obvious features manifested by wave
motion, the reason is that the ordinary definitions of these variable3
do not accurately apply to a system of dispersive waves. That is, the
wavelength is only very approximately the distance between consecutive
waves, and the period approximately equal to the coresponding time
interval - and this approximation becomes increasingly poor nearer the
wave front. This is because they are not properties of individual waves.
Both wavelength and period should more properly be thought of as functions
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of the dimensionless wave number; viz:

L = Znh/a (11-16)

1

T ZTT(h/go tanh a)a (11-17)

Both period and wavelength are theoretically infinite at the wave front,

descend hyperbolically, and diminish with increasing time like T-I and

T , respectively.
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11-2 THE SCALING LAWS

While the non-dimensional generation model (Eq. 11-15) is useful in

describing the general features of axisyrnmetric wave systems, the

effects of varying the initial geometry (water depth and charge position)

* and the relative energy (yield) of an explosion can better be discussed

by considering the same model in dimensional form:

br 0 v/k kI
(k) = [ d J 3 (rok) (11-18)

where the phase factor has been omitted as irrelevant to the discussion

of wave amplitude. Equation (II-18) states that the amplitude spectrum

n(k) when viewed from a fixed observing distance r, depends only

upon the initial source dimensions b and ro, and the water depth h.

The former can be supposed, in turn, to depend upon the charge yield,

Y, and the charge depth, Z, relative to the free surface (Z = 0).

11-2. 1 Effect of Water Depth

Consider, first, the effect of changing the depth only, all other input

conditions remaining constant. Figure U1-3 shows 1(u) computed for

five values of the ratio h/r and plotted as a function of or= kh. For

clarity, only the first maxima of the wave envelopes are shown. When

the depth is large, the significant* regions of the amplitude spectra

become independent of depth. This is because, as in all water wave

problems, the mechanism of surface motion becomes independent of

water depth when the latter exceeds a substantial fraction of a wave-

length (h > L/Z). As the relative depth progressively decreases (h/r < 1),

the spectrum undergoes distortion, and the maximum wave amplitudes (as

shown by the solid line) first decrease to about half the deep-water value,

and then increase inversely as the depth decreases without limit. But

this latter increase is inconsistent with the very limited data available on

explosions in shallow water (see Section 11-3). Moreover, the theory becomes

increasingly inaccurate for small values of kh. If, however, one accepts the
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physically intuitive argument that the maximum wave height can never

substantially exceed the water depth,

S• O. 39 r = r (11-19)

where Trn will diminish toward zero as the water depth diminishes,

as suggested by the dotted branch A-A' in Fig. 11-3.

1l-2. 2 Effect of Charge Depth

We consider now the effect of varying the charge depth Z while holding

the yield and water depth constant. Since our model is not based on the

physics of wave generation, it says nothing about charge depth, and its

generality as a prediction model depends upon the above-cited assumption

that the experimentally-determined effects of charge depth variation can

be incorporated in the parameters b and r (Eq. U1-18), and in a manner

(hopefully) scaleable with yield.

The influence of charge depth on wave production has probably been studied

more iWertsively on an experimental basis than any other single factor.

Yet today, there is no satisfactory expl nation for all of the observed

effects, typically illustrated in Fig. 11-4, which is a plot of maximum

observed wave amplitude time radius ilmr vs. charge depth Z for a con-

stant yield (Y = 385 lbs. TNT) and radius of observation. As the charge

position is moved downwards from a relatively unexplored geometry just

above the free surface (wherein wave effects are known to be small

or unimportant), the curve exhibits a very high, narrow maximum

for shots very slightly beneath the surface, followed by a minimum,

and a second - but lower - maximum, after which the widely scattered

results suggest that successively lower cycloidal maxima may occur. The

first two maxima have been n~amed the "upper and lower critical depths",

respectively, because the largest waves occur at these charge depths.

At least the second minimum can be linked to the emergence of the explosion
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bubble at the surface in a contracted phase following its first expansion.

While the lower critical depth is understanr:abiy analogoL'j to the maximum

observed in similar plots of radii and depths of explosion craters in solid

materials, no sound pNhysical explanation has yet been advanced for the

upper critical maximum, although a recent theoretical model suggests

that it may be due to restriction of surface venting because of surface

shock reflection (Kriebel, 1968). This effect is so far unverified ex-

perimentally. However, since the entire region interior to this maximum j
is filled with data, it would appear to be a precarioua stability conditionr

that results in maximum effects, and one that is not readily reproducible.

Nevertheless, the possibility that a near-surface explosion might produce

waves of this magnitude cannot be ignored whea making wave predictions.

An additional experimental observation (but one which may be of princi-

pally academic interest, since the precise arrival times of individual

waves are not ordinarily of military significance) is a change of phase

between the corresponding waves of trains generated by explo-

sions above, or below the upper critical depth, respectively. Sucn. a

change, in fact, is predicted between theoretical mode I3, o0- wave trL, ins

generated by an initial impulse and an initial elevation, respeci.C'•ty,

This fact, together with physical intuition•, suggests that an impulse model.

may be more appropriate for above - or ný..ar-surface explosions. How-

ever, since neither model is based on physical reality, and since the de-

formation model can be suitably adjusted to give adequate preelictions

for surface explosions, the latter is employed exclusively hereinafter.

Turning now to the question of scaling, empiricalcurves, as shown in.

Fig. 11-5, which is similar to Fig. 11-4, have been obtained for a

variety of chemical (HE) charge weights within the range 1 lb < Y <

14, 500 lbs (TNT equivalent), but with a steadily increasing scatter

in wave amplitudes with increasing charge weight and charge depth.

While some of this scatter can be attributed to Cifferences in the

experimental conditions, much of it appears to lie in an inherent
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irreproducibility of wave effects from larger explosions, the latter

exhibiting no well-defined amplitude maximum either at or below the

surface. In fact, the maximum waves for large charges were produced

by relatively deep explosions. However, the significant features of the
depth-of-burst curves at smaller charge weights were only obtained
by hundreds of repetitive tests, and an upper critical maximum is still

clearly present with charges as large as 385 lbs.

Because most of the above testing was performed before the develop-

ment of a suitable hydrodynamic model, earlier attempts to relate per-

tinent variables were restricted to dimensional analysis. Unfortunately,

the water depth was not considered to be important, and most of the larger

tests were carried out over uneven bottom, which has made the wave

records difficult to interpret. Nevertheless, attempts have pe:Lsisted

to force rather widely scattered results into the framework of the mixed-

dimensional relation

r 1.1/Yp = G(Z/Yq) (11-20)

where 1m is the largest recorddd wave amplitude at a distance r and

G is an empirical function (hopefully) to be determined from the optimum

composite curve of all test data obtained by trial adjustments of the

exponents p and q. On a purely kinematic basis one expects that, if

explosions of different sizes produce geometrically similar disturbances,

then one should find that p - 1/2, q = 1/3. Unfortunately, nature is not

quite so kind, and the most careful review of experimental data for HE in

the light cf hydrodynamic theory indicates that, while the general form of

Eq. (11-20) ts valid over an impressive range of Y, the best value of the

exponents p and q seem to be slightly different from the above values, and

that, because of atmospheric pressure, Z is not simply scaleable as a

power of Y, as shown below.

First note that Eq. (11-18) shows that whenever a> 3, ilmr is a function

of the explost,- i s.-,re only, in accordance with Eq. (11-20).
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In addition to Eq. (11-20), we must establish the scaling law relating

wave number to source radius for events where the charge depth Z

is suitably scaled. Based on experimental results, it is suggested that

r kYC = F (Z) (II-2l)
0

Charge depth scaling, particularly for surface-venting explosions, raises

the problem of accounting for energy partition between atmosphere and

water on the cavity history. These effects are manifestly different for

chemical, relative to nuclear, explosions. Unfortunately, the bulk of

empirical data fall within the former category where the physics of energy

partition is least understood. It therefore is more appropriate to first

consider scaling of subsurface explosions.

Using dimernsional arguments, and assuming that a constant percentage

of explosion energy goes into shock, for charge depths great enough so

that the explosion cavity does riot rupture the surface at first expansion,

Penny (1945) suggests that the scaling law for Z should be

Z 33 Z +P Y

1Z 1 + a 1

where P is the atmosphere pressure head. This relation shows that Za 1/3
scales like Y for small charges (Pa >> Z) and like Y for very

large ones (Pa <- Z).

Figure 11-5 is a plot of r/Y 0 5 4 versus Z/Y 0 3 for all available TNT

explosions, where the water depth was large enough so that the wave number

Zm 3. Data were excluded when the products -nmr at different

ranges from a given event failed to agree within 10%. The amplitude

scale-factor y 0. 54 was determined by minimizing the vertical RMAS data

scatter about the arithmetic mean within integer zonal multiples of Z/Y0.3

It is clear that practical limits for prediction purposes can be expressed as

m - 18, 0.25 >Z/Y03 >-0.25 (11-23)y0.54
Y.
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for surface explosions, and

0-54 10, Z/y < . 25 (11-24)

for subsurface explosions.

11-2. 3 Scaled Source Coefficients

Returning, now, to Eq. (11-21), if we let k = km at i- = Tm signify the

wave number of the maximum wave in the time-record of a wave train

observed at a distance r, then km can be evaluated from experimental

data knowing the (uniform) water depth and arrival time of ~nm. Figure

11-6 shows the variation of km with yield Y for the data of Figure II-5

which, again, are practicably divisible into two groups, given by the

power laws

-0.3 0.3surface km =0.44Y , 0.25 > Z/Y >0.25 (11-25)

subsurface km = 0. 39 Y -. 0 < - 0. 25 (11-26)

The scatter of data for wave number is very much smaller than that

for wave amplitude, since the dispersion is a function only of the water

depth and source radius. Equation (11-21) is thus verified for explosions

deep enough so that k h > 3, because the largest waves Tn will occur
m

when ro k = 4. 2; giving the scaled source radii

0 msurface r° 4.2/km 9. 6YO" 3, 0. 25 >ZY'3>-0. 25 (11-27)

0.3 03
subsurface ro 4-2/km 10. 8Y Z/Y <-0. 25 (11-28)

It is significant that Y is also found to be the optimum scaling ex-

ponent for crater radii in solid materials (Nordyke, 1962).
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Now, combining Eqs. (11-23), (U-24) and (11-27), (11-28), and noting that

for kmh > 3,ynr = 0. 63 bro, we obtain the source amplitudes,

surface b = 2.8 Y0 0.25 >Z/Y0 >. 0. 25 (11-29)

0.240.3
subsurface b 1 . 6 y0. Z/y0 3< <_ 0. 25 (11-30)

Again, Y0.24 scaling has also been found to be most appropriate for

crater depths in solid materials, although there is no corresponding

upper -control maximum in the latter media.

Since not only crater radii but also crater depths in solid materials

diminish as the charge depth is decreased towards zero, the anomalous

increase in maximum water wave amplitude at the upper critical depth

can only be the result of the kinetics of water motion following initial

expansion, probably abetted by the better impedance match between

water and air than that for most solids.

As evidence of the general applicability of the model, Fig. U1-7 shows

wave envelopes computed from Eq. (11-18) (phase factor omitted)

normalized to the stated maximum amplitudes rvn for three wave trains

recorded during the 1966 Mono Lake test series (Pollard and Wallace,

1967). (The standard subsurface prediction [b = 1. 6 Y0 24 ro = I0Y0 y ]
would have given uniform maximum envelope amplitudes rfn = 0.38 ft.

at r = 3600 ft, thus over-predicting for the shallower shots by about

22% and 35%, respectively. This is necessarily the case with scattered

data; the prediction must cover the possible maximum case.)
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11-3 SHALLOW WATER WAVE GENERATION

Interest in shallow water generation stems from the fact that, although

the wave-making efficiency is smaller than that for an equivalent explosion

in deep water, a greater fraction of the resulting wave energy goes into

the leading waves of the train. This is because the cavity radius, which

controls the wavelength of the principal waves (Eq. 11-27), is substan-

tially independent of the water depth. Moreover, because of their low

steepness (m km <h k m < 1), such waves are less apt to break on

gentle slopes, and hence are potentially capable of a higher absolute

shoreline run-up than steeper waves of the same height. Thus, the

tendency for greater run-up is opposed by decreasing available wave

energy as the generation depth decreases, and it is desirable to inquire

whether the absolute run-up will increase or decrease ia ruch cir-

cumstances.

While the deep water prediction model becomes invalid for h < 6Y 0 3

a general theory exists for shallow water generation (Kajiura,. 1963).

As with deep water generation, however, an acceptable prediction

model must be normalized to an extensive set of experimental data.

Unfortunately, present data are limited to a single small test series

with 4- lb TNT charges (WES, unpublished) and two 9, 250 lb. shallow

water shots during the 1966 Mono Lake tests (Wallace, 1967). Figure
11- 8 shows the available data compared with that for deep water. The

former have roughly the same charge depth dependence, but the rLnr/Y 0 '

values are only about half as great as the median (heavy) line for deep

water tests. Although the WES original records are not yet available

for analysis, Fig. II- 9 shows the published wave records for shot 2

of the 1966 Mono Lake shallow water series (Wallace, 1967). As dis-

tinct from deep water records at similar distances, the wave trains

are characterized by a large, long leading wave, followed by a series

of shorter waves, whose amplitudes increase and then decrease with

time. Such wave trains can be shown to be predictable by shallow water

generation theory of Kajiura (1963).

38



-' .... .,

16
SHALLOW WATER TESTS

{i4lbsl h:6.3ft

0Ois h : 5.04ft
(WES UNPUBLISHED) h= 3.78ft

h = 2.52ft

9250 lbs ; h = 14 f t
MONO LAKE h:I4ft

1966 h =10ft

12

RANGE OF DEEP WATER
DATA

d
>- 88 -

E

A 0

0

oo

01

0 -2 -4 -6
Z/Y 0.3

Figure 11-8 Summary of Exploeion Wave Data for explosions in shallow
water underlined points are for bottom-denotated charges
(Z = -h)

39I' ________ ____A-2-__70



100

4-A

0

C4JJ

W .4O
to~

P-4

0

0 0d

U Cl

0'

0Y 00Y i ~ii d O d a

N~ 0N1iJVA 3 13 3~MM

_____ ____ ____ ____ ____ __40

___ __ ___ __ ___ __ ___ _A - A-6



CHAPTER III

WAVE PROPAGATION
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III-1 UNIFORM WATER DEPTH

When the water depth is uniform, or deep enough, relative to the ex-
0.3plosion yield (h >6Y ) so that the principal waves are unaffected by

the depth the wave system will have circular symmetry. The general

characteristics of such an expanding wave system will resemble those of

Fig. I- 1.

As in the theory for wave generation discussed in Chapter II, the local

( Iwave amplitude at any place and time is calculated by summing the

Fourier components which arrive simultaneously from all of the ele-

mental regions comprising the source disturbance. The wave amplitude

is a function of the local energy density, considered to be the property

of an energy packet bounded by adjacent rays radiating outward at group

velocity in the direction of the rays. The procedure is appropriately

called the conservation of energy flux. Thus, the amplitude, of any in-

dividual wave is not a property of that wave, butwillvaryaccording to the

wave amplitude envelope as each wave passes through. In order to

determine the amplitude of any particular wave at a given point or time,

one must first determine when the wave will arrive at that point,

determine its local frequency from the dispersion relation (Eq. 11-2),

and then compute its amplitude from the general formula (Eq. I- 18).

The local wave position is determined from the phase function (Eq. 11-6).

While it is known that the wave phase at a given point shifts by as much

as 1800 as the charge depth is varied, this shift is ordinarily of no

importance to wave effects, and is ignored in the following discussion.

Thus the calculated instantaneous position of any particular wave in the

ensemble passing a given point will be uncertain with a half-wavelength

or so, or its arrival time uncertain by half its period. This uncertainty

will not ordinarily affect the local amplitude.

At any point in a space-time coordinate plot of an expanding wave train,

any wave can be identified by the position of some point of constant phase

(say, the wave crest), usually by assigning it an order numbern, reckoned
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inwards toward the source from that crest nearest the wave front. The

locus of such points is called a phase trajectory, two of which are shown

in Fig. I-1. Since a point of constant phase (point phase) is defined by

cos (wt - kr) = m = constant, wave crests will occur when m = 1, and

the crest order numbers will be given by

w t - kr = rr (Zn- 1) n= 1, 2, .1 ., p (III-!)

In view of the auxiliary equations for group velocity and frequency for a

j Ipoint of stationary phase,

v = r/t = (W/2 k) (I + 2 kh/sinh 2 kh) = d(,

2
U= gk tanh kh

Equation (111-1) can be revised to a pair of equations relating n and r

or t to the wave number k and the (constant) water depth h.

TT (2n-1) kL 1- 2kh/sinh2kh (III- 3 a)
r I + 2 kh/sinh 2 kh

Tr (Zn- 1) 1 (
t (gktanh kh) (1- 2 kh/sinh 2 kh) (III- 3b)

Equations (III- 3) might be called the field equations for wave number in

the r-t plane (similar to R-T plane). Knowing either r or t, h and n, k

can be found from a curve or table, and the unknuwn vai iable determined by

substitution. More commonly, h, r, and t are known and n is desired. In such

cases, no exact solution is possible, but the closest integer value p (n)

can be found by determining k from Eq. (111-2) and substituting in either

of Eqs. 111-2..

Simplifications of the above procedure can be made when the

water depth h is substantially greater than the wavelength L at the

frequency considered, as defined by

kh = 2rrh/L> 3 (deep water) (111-4)
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In this case, Eq. (I1-3) becomes
4- -

TT(2n - ) I k r = (gk)a II5

from which, by eliminating k,

T (n- 1) (111-6)•~ 4r

Thus the trajectories of individual waves in the r-t plane are first order

parabolae, whose consecutive arrival times at any point, R will be

In the ratios

T TT .etc.

3Tf/

Similarly, at any instant of time, T , the consecutive crest radii will

have the ratios

R :R /3: R/5 ... etc.
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111-2 NON-UNIFORM DEPTH

111-2. 1 Method of Approach

There is no uniformly valid theory for predicting the evolution of an ex-

plosively-generated wave system in water of non-uniform depth. This

is because depth variations act to disturb the uniform radial flux of

energy and speed of wave propagation by processes of refraction and/or

reflection in a manner too complicated to permit simple generalization.

Moreover, these perturbations depend upon the local wave frequency,

which, itself, is varying with time. Lastly, such nonlinear processes

as finite wave height and frictional dissipation, that can be ignored in

deep water, must be considered in shallow-water propagation.

As a result, in order to make meaningful predictions, a piece-wise con-

tinuous computation scheme is used, (see Section 111-3. 2), by which

energy and waves can be propagated over a greatly simplified step-like

topography, suitably selected to approximate the actual sea floor over a

limited region. The validity of such a model depends upon a number of

simplifying assumptions or approximations, each of which have been

separately investigated. The most important of these factors are reviewed

in the following sections. Because of the greater simplifications afforded,

in most previous theoretical and experimental work, it has been assumed

that the waves are periodic. While ultimately, one ha. 'o rely upon a

theory valid for dispersive waves, the importance of wave reflection,

nonlinearity, and bottom diesipation can more easily be assessed by

assuming that the waves are quasi-periodic.

111-2. Z Wave Reflection

The many theoretical attempts to derive a suitable formulation for the

reflection coefficient for periodic progressive waves in water of non-
uniform depth have been reviewed by LeMehaute" (1966). Of these, the

work of Miche (19441 and Roseau (1952) have the most general application

to the problem of explosion waves advancing shoreward from deep water.

The Roseau theory applies to a particular family of bottom profiles, some
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of which quite closely resemble the continental shelves and their terminal

m escarpments. Application of this theory to the explosion wave problemr

(LeMehaute', et al, 1965) indicates that the correction for wave reflec-

tion by the continental slope is insignificant for all frequencies of

practical interest, even for the long leading wave. In the limiting case

of small reflection, the Roseau theory tends to the linear conservation of

energy flux (in one dimension). This conclusion is further supported by

wave tank experiments (LeMe'haute', Snow, and Webb, 1966).

Since the reflection coefficient for waves advancing at oblique incidence

will always be less than that for normal incidence, the effect of reflection

is ignored in the present prediction model.

L1-Z.3 Wave Shoaling and Peak-Up Phenomena

The method of conservation of energy flux is one of several approximate

methods available for calculating the transformation of a wave propagating

from deep water to the shore. It has the advantage that it is easily applied

to practical predictions. This method assumes a priori that there is no

A friction either internally in the fluid or at the boundaries. Moreover, it

* is assumed that there is no reflection of the wave energy due Lk, the

sloping bottom, and that the wave motion may be described locally by

the solution to the corresponding problem for a horizontal bottom.

Caldwell (1949) showed experimentally that reflection is negligible

for slopes less than 4. 5 degrees. Roseau (1952) substantiated this finding

theoretically.

This method has been used by numerous investigators to obtain the trans-

formation of waves. Some differences between these various investigations

are attributable to different mathematical approximations for the waves.

The simplest case is when the wave is taken to be a linear progressive

wave. In this case the shoaling coefficient H/H is a function only of the
0

group velocities v 0 and v in deep and shallow water, respectively.
1 1

H [-TZ = [tanh a(1 + 2a/sinh 2z =Z (111-7)
0 0
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For waves of finite ,ght, more precise methods are required. By

taking the third order gravity wave theory, LeM~haute and Webb (1964)

computed the transformation of waves, assuming conservation of energy

flux. Their results indicate a larger shoaling coefficient than pre-

dicted by the linear theory (see Fig. ILl-I and 111-2), and the deviation

increases with increasing deep water wave height, H0. The same trend

(i. e. , larger shoaling coefficient for larger initial wave height) was

obtained from a similar analysis, using the fifth order theory (Koh and

LeMehaute', 1966) as shown in Fig. 111-3, but the fifth order wave theory

is not applicable when the water is too shallow. This is because at shallow

depth, we have exceeded the limit of applicability of the Stokes wave theory

since the series is non-uniformly convergent. (Actually, the fifth order

theory ceases to be valid for a > 0. 6. )

Basically, the problem of wave propagation, as investigated herein, possesses

three geometric characteristic lengths: namely, the depth h, the wavelength

L, and the wave height H. From these it is possible to form two dimension-

less quantities H/L and H/h. The fifth order theory expands the solution,

using essentially H/L as the parainiter of expansion, without paying much

attention to the other parameter, H/h. It was implicitly assumed, therefore,

that in the theory the quantity H/h is unimportant. In the present investigation

of wave shoaling, this quantity is certainly not uniformly small in the

physical region of'interest. In particular, for small depth (and hence

larger H/h) the fifth order theory appears to be a poorer Approximation

to experimental results than the corresponding third order theory. In

the limit as h -4 0, the third order theory is poorer than the linear theory.

It is concluded that the third order results should be used for calculations

of wave shoaling, where extreme accuracy is desired, but that the first

order theory is adequate for most cases where the topography is impt~r•-

fectly kniown.

Wher waves arrive at a depth smaller than approximately 1. 4 times the

breaking depth, a sudden increase in wave height is observed experimentally

(LeMehaute, Snow aud Webb, 1966). Figure 111-4 illustrates this phenomenon.

Even though the general results given by previously mentioned nonlinear

wave theory indicate this trend, there is presently no satisfactory theory
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which can match the experimental facts, although Van Dorn (1966)
suggests that such a peaking up is to be expected for waves on a slope

when the local Ursell parameter H L ) > 100. As a practical ground

rule, we can consider that the wave height suddenly increases prior to

breaking by a factor of 1.4 above the value given by conservation of energy

flux.

111-2.4 Beating Phenomena Due to Reflection

While reflections can generally be neglected in waves advancing from

deep to shallow water over the continental slope, upon reaching the shore-

line, a dispersive wave train is, to some extent, reflected seaward; the

leading portions arriving back at any intermediate relevant point before

later portions have yet passed that point on the way to the beach. That is,

the observed offshore surface motion consists of a quasi-standing wave

system, composed partly of incident waves and partly of reflected waves,

the exact motion depending on their relative heights and phases. Hence,

we see a beating effect at various offshore points. It is to be noted that

i the envelope of the run-up history does not evidence such beating, since

there is always an antinode at the shore.

The beating phenomena associated with reflection of dispersive wave trains

has been theoretically investigated (Le Mehaute, Hwang et at, 1967) for

the case of total reflection, corresponding to non-breaking waves. The

wave pattern was calculated at various distances from the shore, and it

was found that the irregularities due to superposition of the reflected wave

increases as the distance from the shore increases. Figure 111-5 is an

example of a computed time history for an offshore °point. and shows a

beat superimposed on the normally smooth modulation envelope.

T his result is confirmed by the experimental observations of Van Dorn

(1966). Figure 111-6 shows dispersive waves (records made at four positions)
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in a tank with a sloping beach. Results are shown for several water

depths along the slope, and it can be seen that the beats are most pro-

minent at some distance from shore, tending to lessen in very snall

(near-shore) depths. The asymmetry of the shallowest record is due

to wave breaking.

If the waves are breaking, this beating phenomenon will be attenuated,

but there will still remain some residual discrepancy between the un-

reflected theoretical model for the incoming wave and the measured one,

since beaches never totally absorb wave energy.
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111-3 PRACTICAL METHOD OF CALCULATION OF-DISPERSIVE

WAVES WITH NON-UNIFORM DEPTH

111-3. 1 Wave Transformation - Basic Principles

With non-uniform depth, wave generation can still be computed by the

methods of Chapter II, and the local wave amplitude determined by the

conservation of energy flux, but the procedure is more complex. Where-

as in uniform depth both frequencies and phase points propagate in co-

incident straight lines, when the depth is variable not only do frequencies

and (constant) phase points propagate at different - and varying - speeds,

but, in general, by different paths; moreover, these paths are no longer

straight lines, but are curves that must be separately determined

prior to the amplitude computation. These curves have, somewhat

loosely, been given the name rays, and no confusion results

from this terminology in the case of monochromatic wave systems,

wherein a moving phase point (say, a wavecrest) is always associated

with a constant frequency. In a dispersive system, however, the distinction

must be mnade between the propagation paths for frequency elements

and phase points. The word ray will be defined here as the curve gen-

erated in a space-time coordinate system by an energy packet propa-

gating at group velocity, while orthogonal refers to the analogous path

for a phase point moving at phase velocity. Both the rays and orthogo-

nals have in common that the travel time for frequencies and phase points,

respectively, is a minimum between any two points on these curves; this

statement is, in fact, a definition of a ray in geometric optics.

In order to determine the spectral energy at a remote point in water of

variable depth, then, one must first determine the rays connecting the

source and the point of observation for a given frequency, and then integrate

the equation (Eq. II-I) for this frequency along the ray to find

its arrival time. Since, in a continuum, energy is considered to

be conserved within a wavepatch bounded by adjacent rays and adjacent

frequencies, the above process is then repeated with small changes in the

ray direction and frequency in order to determine the energy intensity at
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the observation point. This procedure must be repeated for enough fre-

quencies to define the energy spectrum of the disturbance as a function of

frequency and time.

In an entirely similar fashion the phase of the disturbance can also be

determined as a function of time by computing the required orthogonals,

and then integrating (Eq. II - 5) along them to determine the arrival

times of the consecutive phase points. Although, in principle, the com-

putations must %gain be repeated for each of the elements comprising

the source, for remote observation points the travel paths will be sufficiently

similar that this latter complication can usually be avoided.

It is apparent from the foregoing that the task of computing the wave

history at even a single observation point is apt to be very complicated

and laborious. Although the differential equations for the rays (11-7) can be

written down in the most general form, they cannot be solved explicitly

for arbitrary topography. No similar equations exist for finding the

orthogonals. In general, the rays and orthogonals must be found by

graphical constructions on a trial-and-error basis or computed by iterative

numerical techniques for each frequency concerned.

Fortunately, however, as in the theory of generation, si fying assumptions

make possible quantitatively satisfactory calculations of v characteristics

in regions where they can be justified. These assumptions, in order of

consideration, are:

1) That within an angular zone of interest with its apex at the

explosion point all depth contours can be approximated by

straight lines.

2) That the laws of geometric optics apply to the construction

of wave rays and the computation of wave amplitudes. These

laws essentially require that the wave amplitude be small enough
so as not to affect the wave speed; that the water depth does not

change by a significant fraction in a wavelength at any fre-

quency considered; and that the local wave speed be equal to

that if the local depth were uniform everywhere.
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3) That the distance along a ray connecting any two points does

not differ significantly from that along an orthogonal connecting

the same two points; that is, that phase travel times may be

computed by integrating along a ray in lieu oi constructing

separate orthogonals.

111-3.2 Practical Method of Calculation

111-3.2. 1 Outline of Procedure

The following simplified procedure (Van Dorn, unpublished, LeMehaute',

Hwang, et al 1967) can be used to compute the wave characteristics at any

place or time following an explosion, subject to the above assumptions.

1) The wave envelope spectrum obtained from Eq. (II- 18) is first

subdivided into a number of component frequencies w., each1

identified by an initial amplitude I I (w,) in water depth hI at

the explosion site, which is taken as the origin of cartesian

coordinates for further calculations with the x-direction shore-

ward.

2) The region shoreward of the explosion point, 0', assumed to

be the area of interest, is subdivided into zones radiating from

0', and a suitable number of depth contours are approximated

by drawing straight lines C, across each zone (Fig. 111-7).

3) A family of wave rays for each above frequency is then computed

to further subdivide each zone. Such subsets of contours inter-

sected by refracted rays comprise elemental regions within

which energy is to be conserved for each frequency.

4) The wave amplitude at every contour is then computed from

the conservations of energy flux-, as well as its arrival time,

wavelength, period, and other number by which the local wave

phase can be identified. Test criteria are also applied to

determine whether the local wave phase is stable and satisfies

the assumed linearity conditions (IV-2), or whether it breaks

and must therefore be treated differently.

5) Step 4 is then repeated contour by contour until some reference

contour near shore is reached, after which the run-up can be

computed by the methods of Chapter V.
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6) Steps 5 and 6 are then repeated for each ray and each fre-

quency to determine the time history ol the wave field as a

function of distance along shore within each ,one.

In general, each such calculation differs from every other, which ex-

plains why the prediction of wave characteristics over complex topography

cannot be generalized in any convenient fashion, although the gross results

can be presented ultimately in relatively simple form.

11-3. 2. 2 Computation of the Ray System Within a Zone

As a frequency element propagates at group velocity towards shore it will be

refracted according to Snell's law for geometric optics. Figure 111-7 illustrates
the segmental refraction of a ray originating at 0' at an angle e to the

shorelinc iA.I 0'-x. The ray is approximated by straight line segments

r. in crossing the intervals between discrete contours Ci, each of which

intervals is assumed to have a uniform depth hi, until it eventually reaches
a limit contour C beyond which the two-dimensional theory of run-up takes5

over.

Adopting the nomenclature of Fig. Ill-7, one can calculate a ray path as

follows. Let Q(xn, yn) denote the point of intersection between the ray
and he th

and the n contour. Then the nth coordinate of the point can be related to

the previous coordinate by

Pn Yn- Xn- tan (n1+ n- sin a,'
X = n

cos a'n + sin an tan (a + 0 (111-n )

Yn =Yn-.l + (xn - X n-) tan (anI + 0n-1 ) (111-10)

and the distance between points Q(x n-, yn- ) and Q(x, yn) is

2)2]Ar [(x X 1)2 +(Y - (+- 1 1)

The relationship between e n-I and P n is given by

pA sin-l ['n+1 sin (CL, + 8n-l - on)] (III- Z)

n
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where

dk -h h

is the group velocity ratio across the corresponding contour. * The time
required for propagation across Arn is

Ar 2Ar
n n

A Lt =- (11I- 14)
n v ~gh tanha2

nnn. +TT 14)

and the total propagation time from surface zaer to point (xn, yn) is

equal to the :u,-m of the propagation times across Ar ; that is
n

n
t = E At. (11-15)

j=1 J

111-3. 2. 3 Wave Amplitude Change Along a Ray

The changes in wave (spectral) amplitude associated with propagation of a

wave packet of constant frequency in water of variable depth has been

given for the special case where the direction of propagation is normal to

the bottom contours (Van Dorn, and Montgomery, 1963). In such cases the

conservation of energy flux is given by:

r r1

[[ r (Z--v)dr ]constant (111-16)

r r
0 0

Where E(W) is energy per unit frequency, and r is distance measured from the

origin along a ray. The first factor in brackets gives the effect of ray separation

(geometric spi'eading) and the second factor the effect of dispersion (fre-

quency separation).

*The group velocity is used here instead of phase velocity because an
energy packet of constant frequency is being refracted instead of a point

. * of constant phase.
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In the coordinate system of Fi-, 111-7, the amplitude change in going from

the origin r to the point r = ri can be written as

1  1

where 6 r is the interval between two contours, [k(h)] (1 /Z

2 2 21i4-k.h.!sinh Zk.h. - k. h. (1-2 cosh 2k.h.)/sinh 2k.h.
=[8./(g tanh-k h] 1I -18)(1 + Zk.h. /sinh 2kihi)3

1 1

and, again, ki(h) is obtained from

2w =gki tanh k h.

When the rays are not normal to the contours, the effect of refraction can

be included by multiplying (111-17) by the ray-spacing factor

I Cos eI [cs--6•]. (111-19)

1

appropriate to Pach successive contour.

Recalling, now, Eq. (II-18% for the wave amplitude •(w) in water of uniform
thdepth h, the corrected spectral. amplitude T] after crossing the i contour

i .th
and traveling a total distance r. = ZAr along the j ray will be, upon1 1
substitution for W and t their equivalent stationary phase formulae

= br - V/k 1 ]

0 1
i(LV ) : -=-r dl/ i J3 (rokl

ICos 6• vl(Il/Vi~ z(I-0

k t(1/k
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and its time of arrival t. - L /v.. The wave order number

corresponding to the frequency W. will be the integer nearest to

1+2k.h. 1

N i W j ~k, -2kI h(111-21)
ii 1

A schematic drawing used for such a calculation is shown in Fig. 111-8,

where 7 frequencies are shown initially propagating at an angle 8 with

shoreline normal 0'-0. Each frequency follows an independent path.

Since each has its own initial amplitude, it will have a unique amplitude-

distance history (shown above schematically for the highest waves) and

break at a different point. In this example, the contours are z 9sumed to

be parallel to shore. A more realistic case would show more irregular

rays and more variation between them.

The actual breaking point and subsequent history of each wave in very

shallow water can then be treated by methods discussed in the following

chapters.
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CHAPTER IV

SHALLOW WATER WAVES
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IV- 1 INTRODUCTION

Waves in shallow water are important to the purposes of this handbook

for several reasons. Firstly, the wave height generated in deep water

usually amplifies as the wave propagates toward shallow water. It has

been shown (Le Mehaute#, et aL. , 1967) that the wave-making potential

of very large explosions is sufficient to produce abnormal breaking in

relatively deep water on the continental shelves, thus posing operational

problems for ships and submarines. Secondly, the abnormal waves are

potentially capable of producing semi-permanent Local changes in under-

sea sedimentary deposits through the processes of erosion and wave-

induced littoral transport. Any such changes are undesirable from the

standpoint of navigation and possible damage to cables or other undersea
installations. Lastly, the understanding of wave propagation in shallow

water and its breaking is of primary importance in the prediction of

wave run-up on the shore. Thus an understanding of the wave behavior

in shallow water, such as velocity field, breaking, breaking wave pro-

pagation and its effects, is of great importance.
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IV-2 THE ESSENTIAL CHARACTERISTICS OF WAVE THEORIES

Ship and submarine motions are dependent upon the velocity and acceleration

fields of the wave environment. If one wants to investigate the motion of

a ship, it is, therefore, important to find out which theory can best

represent the wave motion. Before an appraisal of the validity of different

wave theories, let us give a brief discussion of the essential character-

istics ct wave theories which are commonly used in practice.

1. The linear theory of Airy in Eulerian coordinates gives the

essential characteristics of the wave pattern in a simple formulation:

the free surface is sinusoidal, particle paths are elliptic and follow a

closed orbit (zero mass transport); lines of equipressure are also

sinusoidal. The terms in are neglected. (See Stoker, 1965.)

2. The linear theory of Airy in Lagrangian coordinates gives also

elliptic particle paths, but the free surface and lines of equipressure

are now trochoidal, as in the wave theory of Gertsner (Biesel, 1952).

3. The linear long wave theory is the same as the theory of Airy
hwhere it is assumed that t is small; as a consequence, the formulae

are simplified considerably. The pressure is hydrostatic and the hori-

zontal velocity distribution is uniform. The wave velocity is simply

vljT (Wiegel, 1964).

4. The theory of Stokes at a second order of approximation is

characterized by the sum of two sinusoidal components of period T1
and i T respectively. As a result, the wave crests become peaked
and the troughs become flatter. The wave profile can even be char-

acterized by the apparition of a hump in the middle of the wave trough.

Similarly, the elliptical particle path is deformed and tends to hump

under the crest and flatten under the trough. In this theory as in all

the following wave theories, there is mass transport as a result of

irrotationality and nonlinearity. However, phase velkocity, wave length
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and group velocity are the same as in the linear theories. The terms

in"('•)3 are neglected. (See Wiegel, 1964.)

5. The theory of Stokes at a third order of approximation is

characterized by the sum of three sinusoidal terms of period T,
11 , and -! T respectively. The same logical results are found.
Z '3
Phase and group velocity exhibit nonlinear corrections. The coef-

ficients of which are functions of h tend to infinity when -h

tends to zero so that the theory cannot be used in very shallow water.

The series is non-uniformly convergent. The terms in 'H are

neglected. (See Skjelbreia, 1959.)

6. The theory of Stokes at a fifth order of approximation is the sum

of five 3inusoidal terms. The coefficients of are functions ofhh and tend to large values for n > 3 even sooner than in the case of the
L3 h

third order theory (n 2 3), i.e., for larger values of L . Consequently,

the fifth order wave theory is less valid than the third order wave theory

for small values of h and cannot be used when < 0. 1. The terms in
L L

(H) are neglected. (See Skjelbreia and Hendrickson, 196Z.)

7. The theory of Keulegan and Patterson belongs to the cnoidal

family of water wave theories. It follows the same physical approach

as the theory of Korteweg and de Vries (1895). Fromapurelymathernatical

viewpoint, there are some inconsistencies as some third order terms

are included while some other second order terms are neglected; how-

ever, it gives apparently good results. The horizontal velocity component

varies with depth. (See Keulegan and Patterson, 1940.)

8. The cnoidal wave theory of Laitone obeys a rigorous mathe-

matical treatment: at a first order of approximation, the vertical

distribution of horizontal velocity is uniform. There is no mass trans-
'H2

port. The terms in are neglected. (See Laitone, 1961.)

9. The theory of Laitone at a second order of approximation gives

a non-uniform velocity distribution. There is mass transport. The
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vertical distribution of mass transport velocity is uniform. The second
order term becomes larger than the first order term as H.{• -•increases.

is not necessarily a small parameter as Halways is.) The series

is non-uniformly convergent. The terms in are neglected. (see
Laitone, 1961.)

10. The solitary wave theory of Boussinesq is the result of a purely

empirical approach. The vertical component of vel ocity is initially

assumed to be linearly distributed from the bottom (equal to zero) to

the free surface (equal to the linearized free surface velocity all/ct).

The vertical distribution of horizontal velocity is assumed to be uhiform.

As a result a correction due '.o path curvature (vertical acceleration) is

added to the hydrostatic pressure.

The equations of motion are Linearized vertically but remain nonlinear

horizontally, i. e. , convective inertia terms where the verticaL com-

ponent of velocity appears are neglected, but the product uu remains.x

The solution is then exact.

As in any solitary wave theory, TI has always a positive value and there

is mass transport equal to the volume of the wave above the S. W. L. The

terms in / are neglected. (See Munk, 1949.)

11. The solitary wave theory of McCowan obeys a more rigorous

treatment and satisfies the kinematic free surface boundary condition

exactly. It corresponds to a higher order solution of the theory of

Boussinesq. The vertical distribution of horizontal velocity is non-

uniform. The terms in are neglected. (See Munk, 1949.)

12. The theory of Goda is actually an empirical modification of

Airy theory and considers only the horizontal particle velocity. (See

Goda, 1964.)
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IV-3 THEORETICAL DETERMINATION OF VALIDITY OF WAVE

THEORIES

While a universal theory which will be valid for all values of h/L,

H/L and H/h does not exist, it is to be expected that some may

present a better fit than others within certain ranges of these parameters.

The limit of validity of the linear wave theory depends, of course, on

the relative importance of the nonlinear terms. Since the second

order term of the theory of Stokes is a nonlinear correction to the

first order term obtained by linear approximation, one can have a

realistic appraisal of its importance by assessing the value of the ratio

of these terms quantitatively.

The potential function for a Stokes wave or irrotational periodic gravity

wave traveling over a constant finite depth at a second order of approxi-

mation is found to be (Wiegel, 1964):

= H uwc kz+h)cos (kx - wt)
2 "-k sinh kh-

+ (H) cosh 2k(z+h) Cos 2 (kz wt)
8 2 sinh4 kh

The series being convergent, and since the term in H is the solution

obtained by taking into account the local inertia only, while the term in

H 2 is the first correction due to convective inertia, i. e. , the most

significant one, the reLative importance of the convective inertia term

can be described by the ratio of the amplitude of these two terms. In

particular, in very shallow water, since cosh kh -4 1 and sinh kh - kh,

it is seen after some simple calculations that the ratio of the amplitude

of the second order term to the amplitude of the first order term is

H 1IH (L

When U H is very small, the small amplitude wave theory is
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valid. The group denoted by UR is known as the Ursell parameter.

If, instead of H, one uses the maximum elevation 11 above the still

water level (1o is equal to H/2 in the linear theory), the so-called

Ursell parameter initially introduced by Korteweg and de Vries is
H /L\3

obtained (Korteweg and de Vries, 1895). When -T\ << 1, the
linear small amplitude wave theory applies. In principle more and

more terms of the power series would be required in order to keep

the same relative accuracy as the Ursell parameter increases.

Also, in the case of very long waves in shallow water such as flood waves,

bore, nearshore tsunami waves, and, in the present case, explosion

waves, the value of the Ursell parameter which is supposed to be >> 1

depends upon the interpretation given to L. The reiative amplitude
H is then a more significant parameter for interpreting the importance

of the nonlinear terms. In this case the vertical component of inertia

force is negligible and the only term for convective inertia is p au

Then it is possible to calculate the ratio of amplitude of convective inertia

to the amplitude of local inertia (PU a/ p au) directly. Since in very
hF

shallow water T is very small and cosh kh -4 1 and sinh kh : kh,
one has simply (here u is the horizontal velocity).

•e H Wu = H-; 2 sinh (kx- wt)

and it is found that

aujPu 7xU max H
~~ -Ft'

wih max
H

which demonstrates the relative importance of the ratio -g. Despite

these difficulties of interpretation, the UrseLl parameter is a useful
simple guide, but is not necessarily sufficient for judging the relative

importance of the nonlinear effects.
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Dean (1965) has attempted to determine the limit of validity of wave

theories on the basis of the best fit with exact boundary conditions.

According to Dean, this method has been successful for deep water

wave conditions. However, for shallower water conditions, it appears

that the error must be extremely small to be a reliable indicator of

wave theory validity. In a word, the experimental results presented in

a later section are the best methods for determining the validity of

shallow water wave theories.

The above discussion summarizes the wave theories developed for non-

breaking waves. The condition that the wave breaks and its breaking

location have been investigated extensively for many years. A brief

discussion of this topic is given in the next section.
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IV-4 BREAKING CRITERIA

As waves propagate into shallow water, depending upon the bottom pro-

file and their previous history, they will either break or surge up the

beach. Occasionally, as was observed during the 1966 Mono Lake

tests, an intermediate situation will arise wherein a wave will become

unstable without breaking, but instead split into a succession of

smaller undulations which travel together towards shore. Wave

splitting has also been observed experimentally, but is so far un-

explained. Since it will always act to lessen run-up, further con-

sideration here is unwarranted.

Despite extensive efforts, and probably because of the large range of

variables and its inherently nonlinear character, no uniformly satis-

factory criterion for wave breaking has evolved.

For a variable offshore slope a, Keller (1961) has shown that both the

linear and nonlinear small amplitude wave theory predict breaking when

H 2 L(IV -1)

As the depth becomes large, H Ho, L 4 Lo, (vo/v) -4 1, formula
I

(IV- 1) differs only by the factor, -j, from the stability limit proposed

by Miche (1951) for relatively steep slopes

0o Za sin a• (IV - )

o max

Figure IV- 1 compa es these results with experimental data and it can be

seen that the theoy generally allows steeper waves than are observed

experimentally for moderate qlopes, but that Eq. (IV-1) gives good results

for relatively small slopes.

Figure IV-Z compares the above two criteria with a time history of the

(one-dimensional) shoreline oscillations from an impulsive disturbance,
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Figure IV-1 Summary of Breaking Criteria
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as computed from the theory of Carrier and Greenspan (Le Me'haute'

and Hwang, 1967). Perhaps significantly, instability develops in the

computer soltution midway between the Keller and Miche breaking criteria.

This result shows the consistency of quite different theoretical models,

and supports the previous assumption that theories developed for

periodic waves are still valid for dispersive waves.

For a uniform bottom of depth h terminating in a uniform slope a.,
Keller and Keller (1964) give the stability limit

1

h •(a/0),IJ)(2a/C) + Jl (2l/ a) (IV-3)

where C is the dimensionless wave frequency, as defined in Chapter II.

In the same notation, Eq. (IV-3) can be compared with the empirical

formula of Hunt (1959)

H k 4T-- (tan al/1)2 (IV-4)

which is numerically very similar over a wide range of slopes and

periods. Van Dorn (1966) has shown that Eqs. (IV-3) and (IV-4)

acceptably divide breaking from non-breaking waves for a very large

class of laboratory experiments with Tr/Z >a.>TT/100.

While the above formulations provide a means of predicting, under rather
special circumstances, whether or not a given periodic wave will break,
they say nothing about the location of a wave at the instant of breaking.

For lack of a valid breaking theory, and good experimental results, the

breaking location for periodic waves is not well defined. However,

numerious experimental data for solitary waves suggests that breaking
Hb

occurs at - = 0. 75 + 25 S for S < 0. 1 (Street and Carnfield 1966). Sinceh b

the continental slopes, S, are of the order of 10-, the approximation
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Hb
h 0 78 is probably adequate for the calculation of the extent of the

breaking regio'n.

After breaking inception, the subsequent wave history will vary with

local conditions. That is, should breaking inception occur on the con-

tinental slope or at some other location where the bottom slope is steep,

t one might see the so-called "plunging" breaker. In this case, vessels

near the breaking inception point would experience the most violent

environment. On the other hand, perhaps more likely, development

may occur as a "spilling" breaker on a very gentle slope. In this case

conditions would be relatively uniform within the entire breaking region.

Whether violent "plunging"' or more gentle t"spiliing" development will

occur at a particular location can be determined through consideration

of the local bottom slope and the deep water wave steepness. Figure

IV-3 (Wiegel, 1964) illustrates three breaking classifications and in-

dicates their dependence on slope; application requires wave-by-wave

consideration at each breaking point. It appears that, in general,

spilling breakers would occur in most cases, although this matter

should be investigated further. Surging breakers are not to be expected

in most coastal environments.

Once breakers are developed, they then enter a second phase of long

duration characterized by an essentially stable pattern of propagation.

That is, they progress as peaks of water separated by long flat troughs,

sometimes followed by secondary undulations, dissipating their energy

through breaking to maintain an essentially constant height to depth

ratio. As they break, they leave behind a fraction of their momentum

and volumne; in this way, they are responsible for the phenomenon of

wave set-up, a slight rise in the mean water level near the shore;

In this latter regime, the processes of shoaling, energy dissipation

through breaking, and bottom friction dissipation are in balance to

maintain the braee form. It may happen that these effects and also
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divergence of wave orthogonals through refraction, will cause a breaker

to stop breaking, perhaps even separate into new waves, then reform

and continue breaking toward the shore. Due to its relative importance,

a detailed analysis of the change in breaking wave height H as the

breaker proceeds toward shore is presented in the following section.

It can be seen that, after a fast initial decrease in height near the

breaking depth, hb, the assumption that H/h is constant is sufficient

for providing a first order of approximation of the breaker height. A

more detailed investigation, where both the degree of breaking and bottom

friction are incorporated into a theoretical model of the hydrodynamics

of the breaker, gives a more complex variation of the breaker height.
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IV-5 VELOCITY FIELD

During the phase of breaker propagation, the velocity and acceleration

fields are of interest in order to establish resulting ship motions.

Mýiller and Zeigler (1964) have performed a field experiment on measure-

ment of the velocity field. An example of the results is shown in Fig.

IV-4, illustrating the "very asymmetric" breaker, one of three classes

found by Miller and Zeigler and said to correspond to a spilling breaker.

It should be noted that in this study, backwash from the beach is of great

importance, distorting the observed velocity field and wave profile,

whereas, in the case of explosion waves on the continental shelf, back-

wash will not exist during most of the breaker propagation. Further-

more, the experiments have been performed on relatively steep slopes

encountered on beaches in contrast to slopes of continental shelves.

For these reasons, it is thought that these experimental results are not

applicable to the determination of velocity field on the continental shelf.

An experimental program for measuring velocity profiles has just been

completed at Tetra Tech (Le Mehaute, Divoky and Lin, 1968). Figures

IV-5 through IV-8 represent a sample of this study. Figures IV-5 and

IV-6 indicate a comparison of horizontal particle velocity with existing

theories for non-breaking and near-breaking waves. Figare IV-6 shows

the horizontal velocity under the crest for a breaking wave, while Fig°

IV-7 shows a comparison of experimental results with different theories

for the vertical particle velocity. The results of this study can be

sunmmarized as follows.

For non-breaking waves of the shortest period (length), Airy theory best

agrees with the data. However, as the wave becomes longer, the data

moves away from Airy theory which is superseded by Keulegan and Patterson

'K&P) coidal theory, McCowan solitary theory, and the empirical form

due to Goda. The Srokes waves, the first and second order cnoi.dal

waves cf Laitone (Ist and 2nd cnoidal, for short), and the Boussinesq

solitary wave are all less satisfactory.
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Figure IV-4 Velocity Field in a Breaker According to

Observations of Miller and Zeigler (1964)
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For the near limit waves the situation is entirely similar, K&P cnoidal,

McGowan, and Goda being best for the longer waves, while surprisingly

perhaps, Airy theory is reasonably good for the shorter, periods.

In specifying a theory adequate for long wa',es, however, the choice is

immediately narrowed to three: Keulegan and Patterson cnoidal theory,

McGowan solitary wave theory, and t1'e empirical modification of Airy

theory by Goda. Of these, one is inclined toward the analytical theories in

the interests of generality and since Goda's results were developed for

horizontal velocity component only.

As for the horizontal velocity profiles for breaking waveE, it is interesting

to point out that in passing from a limit non-breaking wave to the breaking

wave of corresponding period and water depth, the velocity profile is

sensibly unchanged. This may be seen, for example, by close comnpariscn

of Figs. IV-6 and IV-7. It can be seen that the two sets of data points

overlap completely except, perhaps, in the near region of the crest

where violent turbulent fluctuations occur in the breaking case.

This immediately suggests that, except in the foam region, one may apply

non-breaking theories to the breaker with good results. Hence, the choice

of the Keulegan and Patterson cnoidal theory is extended to gently spilling

breakers. Again, the McGowan solitary wave theory may prove practical

in some calculations due to its greater simplicity, and Airy theory may

be adopted for pressure fluctuations. Within the foam region no theory will

apply except that the mean motion may be expected to be given roughly.
Of course, the turbulent fluctuations dominate so that this fact is not of

great interest.

As the breakers propagate toward the shoreline, they are transformed

into bores and run up the beach. In this phase, it is possible to treat

them with the long wave equations by the method of characteristics

(Freeman and Le Mehaute, 1964).,

A detailed approach to the quasi-steady second region of breaking is
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discussed in the following section where the theory of non-saturated

breakers is developed, incorporating the most recent experimental results.

*1
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IV-6 BREAKERS ON CONTINENTAL SHELVES

IV-6. 1 General Discussion

Considerable attention has been given to the hydrodynamics of breaking

waves. The theoretical approaches which have been used fall roughly

into two classes. The first is based essentially on the long wave theory,

the horizontal velocity being assumed uniform along a vertical while the

vertical velocity and acceleration are neglected; thus, the breaker obeys

the equations of a fully developed bore. Representative papers are Ho,

Meyer and Shen (1963) and Freeman and LeM~haute' (1964). Keller,

Levine and Whitham (1960) present a method of calculation of the bore

height as it travels toward shore based on these assumptions and the

results of Whitham (1958). Such approaches from long wave theory

require numerical procedures, such as the method of characteristics,

which become unreliable as the involved distances (i. e. . the number of

computations) become large. Hence, they are more suitable for steep

bottom slopes than for gentle slopes.

The second approach (presented below) is directed toward gentle slopes,
and vas proposed by Le Mehaute (1962) and later revised (Le Mhaute,

Divoky and Lin, 1968). it is based on the principle of conservation of

energy, and is called the Non-Saturated Breaker Theory.

IV-6. 2 The Non-Saturated Breaker Theory

Consider a succession of waves traveling in a sl ,how channel of depth

h, which may be constant or slope uniformly. Furthermore, the channel

width 6 may be constant or variable, allowing lateral concentration of

wave energy, corresponding to waves propagating on the continental

shell, although particle motions are restricted essentially to the shore-

ward direction. It is also assumed that a theory that adequately describes

a wave just before breaking will continue to dedcribe the gross features

of the wave after breaking provided that the bottom slope or side-

convergence is sufficiently gentle. It is well known that, as waves arrive
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in shallow water, their crests narrow and the troughs widen, with the

result that successive waves can be treated as largely independent of

one another. Hence, one is inclined to adopt cnoidaL or solitary wave

theory, especially in light of the experiments desc~ribed earlier. For

simplicity we choose the Boussinesq solitary wave theory although it is

to be expected that a similar development in terms of cnoidal theory

might better approximate actual conditions.

Assuming, after Boussinesq, the wave properties (Fig. IV-9)

profile H sechZ [/ (_H)*x (IV-5)L- h/ h J (V5

I

phase speed c = [gh (I+H/h)]2  (IV-6)

energy E _8 P g Pghh 3 (H/h)3 /2 (IV-7)

where 8 is the width of the wave orthogonals. The conservation of energy

may be expressed as
dE dE dE+
dW-E = C Mx=- W If IV b

where (see I.e Mehaute, Divoky and Lin. 1968, for detailed discussion)

dE 4 fc H (V
dE 53- = turbulent dissipation (IV-9)

-dE - AcE = viscous bottom dissipation (IV- 10)

dEWI t cE 2H3/ 
31 1 _breaking

dt b 32 H-h -h/ L( d -jissipation (IV-11)

where f is a friction coefficient, A(V, MW) is an exponential coefficient for

viscous damping, and 0' is "saturation" coefficient that is chosen to

define the extent of the breaking region. Now, differentiating the left

side of Eq. (IV-8), and combining it with Eq. (IV-9) and (IV- 11) to

eliminate the common factor cE, one obtains
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1 3 L 3h+1d1 4 f H (1+4i 3 6L3 B (a 3 /2

T dx 2 hdx 2 Hdx hhh 2F 3 2 (lifE) h/

(IV- 13)

where B a(1 - O3/(1 + f"H/h) (IV-13)

Clearly, when

= 1, B = 0: the wave is not breaking

A' = 0, B = 1: the breaker is fully developed

Bc is small, B owI - 0'(3 + -A)

B can thus be considered as the ratio of the energy dissipated by the

breaker to the maximum energy which could be dissipated by a bore of

the same height. Note that a small variation in 0' near zero corresponds
to a larger variation in B; hence, a breaker may appear to be fully

developed, or saturated, when it is not.

The problem, now, is that we have one equation, Eq. IV- 12, containing two

unknowns, H (or H/h), and B. It is to be expected that further study will

enable us to write a second expression giving 0' independently. For' the

present, however, we examine Eq. IV-,IZ in two idealized cases. Firstly,

consider a very gentle bottom slope or channel convergence. In that case,

H should follow the usual breaking criterion H/h f 0. 78. Then, if

dh- _ -S and _ -P= -P (IV-14)
dx: 6dx

we find

B 48S - 18f 4 16h (P- A) (IV-15)

For two-dimensional waves on the continental shelf (P = 0, A= 0), B is

zero if the slope is smaller than about -f, frictional dissipation being
48

sufficient to damp the wave without breaking. On the other hand, if S is
* greter han1 + 18f I

greater than 48f O I then B a 1 and the breaker is fully developed

or saturated. In that case, however, the assumption that H/h is constant

is not valid so that another approach is necessary.
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Similarly, for waves in a converging channel of constant depth and such that

f w 0, one has B = 0 for P =AA. That is, the rate of convergence is too
2 1 1

small to overcome viscous damping. When P = + ÷ • -r , B P 1

so that the breaker is fully developed. Again, however, the assumption of

small P and constant H/h is violated.

In the case of large slope or convergence, assume instead that B is

constant while H/h is variable. Then again letting & = -S and -1 a =
dx8 dx-P and linearizing Eq. IV- 12, we get

dH H A 2 P) + j§8f + 31 3 B Bf (IV-16)

dh -N" h•,3-S 6S S3Z 3- S

In case the orthogonals are parallel, P = 0, and viscous friction is neglected,

the above equation can be solved to yield

H h hM B f H. h M
Hb= hbi(hb/ - 6SM - 5=M )k( ) _ (L-I ) h (IV- 17)

v.ere M = 2 -'"

I his corresponds to a two-dimensional wave on the continental shelf.

The result of this equation, for different values of slope S, is calculated

al I is shown in Fig. IV-10. On the other hand, one may evaluate

0' , choosing a converging channel of constant depth with negligible
friction (f=0) and constant wave height H. The-result is

B 32 h I-3/2 T (p y A) (IV-18)

3
where B = 4 as has been specified in Eq. IV-13.

h
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IV-7 WAVE SET-UP

IV-7. 1 E perimental Observations

During several of the ten 9, 250 lb HE (High Explosive) run-up tests

at Mono Lake in 1965, several of the shallow water records obtained

within tie breaker zone exhibited a remarkable, low frequency os-

cillation of mean water level of amplitude approachLig that of ihe

superimposed breaking waves froixn the explosion, an example of which

is shown in Fig. IV-11. Figure IV-12 shows the set-up and the wave

cnvelope which was superposed on the wave set-up. Since such

oscillations were not apparent in wave records made outside the

breaker zone, they were supposed to have originated as a result of

wave breaking, and the b.teraction with the sloping beach (LeMe'hautet, etal,

1966).

A similar effect was demonstrated in a series of wave tank experi-

ments by Hwang et al. (1967), who found that the maximum wave set-

up (,n the continental shelf can be as large as 0. 2 times the height of

the maximum wave of the train prior to breaking (Fig. IV- 13). Be-

cause of its potential aggravation ..f run-up heights, some theoretical

attempts to explain this phenomenca are given below.

IV-7. 2 Wave Set-Up Due to Periodic Waves

Set-up of periodic non-breaking waves on a uniformly sloping beach

has been inv.stigated theoretically by Longuet.-Higgins and Stewart

(1960, 62, 67, 64), and Whitham (1962) by ussing a linear solution for

periodic wavt, , and by Hwang, et al. (1967) by considering the waves

as a quasi-per'odic succession of solitary waves.

Experimental ii, ,estigations by Londgren (1963), Bowen, Inman and

Simmons (1968) a.id Saville (1961) generally confir.n the validity of these

theories: Drior to L, eaking there is a set-down due to "radiation stress"

(the tendency to expeL ,ater from regi h high waves) followed, after
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breaking, by a nearly linearly increasing set-up shoreward as a result

of mass transport due to breaking (see Fig. IV-14).

"According to Hwang, the maximum wave set-up which can be observed

on a shoreline as a result of long periodic waves is.

-1 - 3/2
S= 0.3 8 hb + 4. 5 T g hb (IV-16)

which was approximately verified by his experiments.

IV-7.3 Wave Set-Up Due to Explosion-Generated Waves

The phenomenon of dispersive wave set-up is more complicated as a

result of the unsteadiness of the momentum flux associated with in-

dividual waves in the wave train. It is a transient phenomenon which

is difficult to evaluate. A numerical method of prediction has been

proposed by Hwang, et al. (1967), but it is too complex to generalize

here, despite a number of simplifying assumptions. Qualitatively,

* the mechanism can be explained as follows.

The wave set-up induced by the first wave envelope maximum induces

"shelf oscillation, which theoretically may be amplified or diminshed

by the following maxima, depending upon their relative periods.

ft I The shelf oscillation accompanying the first wave maximum can clearly

be observed in the previous figures. It has been verified theoretically

that these oscillations have periods which closely approach those of

the fundamental oscillation of the shelf or its first harmonic. While

resonant cLr.ditions ca;- theoretically obtain if the wave envelope period

(time interval between consecutive envelope nodai point&, coincides

with a low shelf harmonic, resonance was not observed in these ex-

periments.

With respect to application to explosion waves on the continental shelf,

where many low frequency modes of oscillation normally are detectable
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from wave spectra (Miller, etc. 1962), it is possible that such modes

might be excited in a manner similar to that observed during naturally-

occurring tsunamis (Van Dorn, 1965).
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CHAPTER V

WAVE RUN-UP
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V- I INTRODUCTION

As the explosion-generated wave train propagates towards the shore,

each wave ultimately terminates by running up the beach, possibly

locally augmented or dimished by lower-frequency oscillations of the

type discussed previously. The wave systems produced by large explo-

sions in relatively deep water, aside from their potentially large

amplitudes, represent a unique type of motion that does not occur in

nature, and hence is outside the range of observational experience. The

principal distinction here is one of frequency, the spectral maximum

T for significant events falling with the range 20 sec < T < 100 sec,
mn m

as compared with that for ordinary storm waves (5 sec < ' < 20 sec)

and for tsunamis (100 sec < T < 1 hour). For swell, the direct run-m
up dominates over local shelf oscillation (surf beat), while for tsunamis

the reverse is true. Limited field observations during nuclear and

high-explosive tests suggest that for explosion waves both factors are

of importance.

Because of present uncertainties regarding the best interpretation of

the run-up results from the recent Mono Lake tests (Rooke, et al. , 1967

and Wallace and Baird, 1968), the following discussion of run-up is re-

stricted to theory and experiments involving propagation in one-dimension.

There is no mathematical method available for predicting wave run-up

which will be valid for all possible conditions. Many approximate theories

are available, each with its own range of applicability. Theoretically,

even in the case of regular waves, it is difficult to predict the run-up

from the deep water wave characteristics. The theory must be equally

valid in deep water and in shallow water near the shore where nonlinear

effects must be taken into account. Furthermore, in most cases, the

waves break before they reach the shoreline. The only well-known theory

which includes breaking is the nonlinear long wave theory, where bores

may be included in the computations. (However, this theory is known

to predict the formation of a bore sooner than is observed experimentally.)
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Finally, it must be emphasized that explosion waves are not regular

but consist of dispersive waves with different periods, wave lengths,

and amplitudes. However, it is felt that without a good basic physical

understanding of periodic wave behavior, it is not possible to formulate

a realistic approach to the problem of dispersive explosion-generated

waves.

Ir the next section a brief discussion of run-up of periodic waves is

given.

A more detailed discussion of some of the phenomena treated herein

may be found in Van Dorn (1966) and Le Mehaute, et al. (1968).
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V-2 A CLASSIFICATION OF PHENOMENA AND SIGNIFICANT

PARAME TERS

Since a general approach for complex bottom profiles cannot be made,

phenomena occurring on a simpler bottom geometry are studied and are

interpreted for their application to actual complex cases. The case on

a uniform slope ended by a horizontal bottom is analyzed. The run-up,

A, is then a function of the slope, S, (or tan a), the water depth over

the horizontal bottom, h, and in the case of periodic waves, the wave

period, T (or the wave length, L) and the wave height, H. When h -0 -,

the only significant parameters are S, the deep water wave height, H0

and the wave lengths L.

Thus the relative run-up, R/H, is given as function of dimensionless

parameters, S, (or its inverse value, cot a), relative depth, h/L (or

a= Zrrh/L), and wave steepness, H/L. The relative value, H/H, can be

schematically given by a surface for each value of H/L as a functicn of

2Th/Land cot a, as shown in Fig. V-I.

For a given H/L and h/L, the relative run-up has a tendency to increase

as the slope decreases up to the point where the waves begin to break.

Then the relative run-up of breaking waves decreases as the slope con-

tinue8 to decrease and becomes negligible as the slope tends to 1/100 as

a result of dissipative processes. The relative run-up of nonbreaking

waves also increases as the wave steepness increases (as a result of

nonlinear effects) while the relative run-up of breaking waves decreases

as the wave steepness increases (as a result of turbulent dissipation).

When the relative depth, h/L, decreases, the dependency of relative

run-up upon H/L decreases. This is due to that fact that the relative

importance of the wave length decreases.

The equation for wave run-up might be expressed more generally as

follows:
SZflh H 2.rrhN K/ 2rrh H

S2"h + ,K (V-1)
H f L L -L L L
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in which the function f(a, ZTrh/L) is the run-up contributed by linear approxi-

mations; i. e. , when H/L tends to zero, g (2TTh/L, H/L) is the correction

due to superelevation by nonlinear effects, and K(a, 2Trh/L, H/L) is the

reduction in relative run-up due to the loss of energy in breaking and bottom

dissipation, as shown in Fig. V-2. The run-up of a wave with infinitesimal

steepness is given on the surface covered with dotted points in Fig. V-I

and the run-up of waves with steepness greater than infinitesimal steepness

is given on surface which lie successively above one another. Breaking

will occur when these surfaces intersect the surface of breaking as denoted

by the equation

9- tanh -ý-T 11V

Tmax ZS ,r aih4~

When conditions are such that the wave breaks, the relative run-up will

decrease as indicated by a few lines in the diagram. When the value

2Th/L reaches 5, the effect of water depth is practically negligible. Due

to the difficulties in presenting three-dimensional graphs, details are not

included in Fig. V-1. The reader should then refer to Figs. V-2 and V-3.

Figures V-4 and V-5 show the experimental data summarized by the

Beach Erosion Board (BEB, 1967). One finds that the results presented

in Fig. V-3 are indeed a very good qualitative description.
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V-3 THEORIES FOR NONBREAKING WAVES

V-3. 1 Periodic Waves

Under certain conditions, a wave may reach the beach without breaking.

Such is the case when, for example, the beach is steep, the wave long,

and the wave amplitude small.

Since the waves do not break, it is reasonable to assume that they

are totally reflected by the beach, if one neglects bottom friction.

This is the case of a standing wave or clapotis. The run-up is then

directly related to the amplitude of the wave at the shore. In the ex-

treme case of a vertical wall, the run-up i•, in fact, equal to the am-

plitude of the wave at the wall, or twice that of the original progressive

wave. Hence the run-up, R, is equal to the wave height of the original

wave, H, and R/H = 1. For a beach that is not vertical but inclined

at an angle, a, to the horizontal, Isaacson (1950) and Miche (1951),

using linear theory, obtained the result

R/Ho = (V-3)

By extending the analysis to include second order terms in the case

of the vertical wall, Sainflou (1928) and Miche (1944) obtained correction

terms to the above formula for a slightly more general geometry, where

the wall is terminated at a finite depth. Botni Miche's and Sainflou's

results, however, are nct complete because their solutions are given

as power series and do not satisfy the continuity equation exactly.

Miche's formula is

H 1 r+ 3H~ +r .... h -rh27 (V-4)
Hi L ~tanh 4 A sinh 2  4 cosh? r- fL L

If h/L is small, this equation ceases'to be useful. In fact, it formally

predicts R/H -4 as hi'L -4 0. A better approximation in this case can

be obtained from the solitary wave theory.

lll
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For a sloping beach instead of a vertical wall, we may intuitively add

the supcrelvation term obtained in front of a vertical wall to the for-
mula AI/H = ýTT/2(x. This is a valid approximation provided the slope

is not too gentle.

Linear small-amplitude solutions to the problem of progressive waves

advancing from deep water to the shore over a uniformlyr sloping beach

of arbitrary slope have been given by Isaacson, (1950) and Peters (1952).

The same problem for beaches of special slopes was solved earlier by

Bondi (1943), Miche (1944), Lewy (1946), and Stoker (1947). The case

of three-dimensional waves on sloping beaches has been solved by

Peters (1952) and Roseau (1952). Since progressive waves were assumed,

energy is continuously flowing shoreward and reflection effects are

ignored. Because the theory is linear, the waves cannot break. Thus,

their solutions are not valid near shore because the wave amplitude

tends to infinity. For the two-dimensional case, this singularity is

found to be logarithmic.

To avoid the unrealistic assumption of no reflection, Keller (1961) has

given several standing wave solutions by matching the solution obtained

from the geometrical optics theory away from the shore to the linearized

shallow water theory near the shore. For a bottom profile in which the

depth, h(x), gradually increases monotonically with distance froin shore

+% • o'o,,'-÷nt •' ,i- h at x = •, obtains
0

(k sinh Vh-k°
H- - cosh• h k

o

(2

in which a. slope angle of the beach at the shoreline, ( L. andT
k is a root of

0

k tanh hk I (V-6)
0 0

By direct substitution of Eq. (V-6) into Eq. (V-5), it can be •ihown that

the former is equivalent to
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IT 2rh 4rT h/'L
= ftanh--(1 + sinh4hL (V-7)

where the term in brackets is simply the linear shoaling coefficient

(H/H )o Thus Keller's solution is just the Miche formula (Eq. V-3)

multiplied by the shoaling coefficient, showing that the linear run-up

theory is relatively independent of the bottom profile, provided that

it does not vary too rapidly.

Later, Keller and Keller (1964) applied the linear shallow water theory

to a piecewise continuous bottom profile and obtained the result:

2 1

H(2/a) +J 1 (20/a) (V-8)

where J and J are Bessel functions.0 1

This analytical result, for the case of small a, has been checked

numerically by use of nonlinear shallow water theory and it appears to

be satisfactory (Keller and Keller, 1965). However, for larger values

of a, the result shows a considerable deviation from the values obtained

by Keller's previous formula (1961).

V-3. 2 Run-Up of Dispersive Waves

Carrier (1966), combiniig the Carrier and Greenspan transformation of

the nonlinear shallow water wave theory on the sloping beach with linear

dispersive wave theory in the deep water, obtained a solution which gives

the maximum relative run-up in terms of distance from the bottom de-

formation and the angle of sloping beach. This method has been applied

to calculate the time history of run-up of an explosion-generated wave

train (Hwang and Fersht 1966, LeMehaute" and 11wang etc. 1967). It is

found that the run-up, R, is (see Fig. V-6)
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R = (0, ) = J (WiD) sin wi f n-o1 A•°os wiJ d]

16 r 1
cosWio ° 1 "0 sin wigdC - - L Ji(w iD

cosaalv3 !'rcoswu~dg + sinw.-X r~sinju.dt (V-9)4o 0, J

where D =4 qx x°

: = t z1_

Iol(t) is the incoming wave train at the toe of the slope (Fig. V-7).

A sample of such calculation is shown in Fig. V-8, corresponding to

the incoming wave train of Fig. V-7. The above run-up calculations

have also been compared with those predicted for periodic waves over
small slopes in Fig. V-7, the former being about 50o greater for the
cases considered. The reason for this increase is not obvious because

of the approximations involved in the calculations, but is possibly due

to the interactions between consecutive waves that are ignored in the

periodic solutions.
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V-4 RUN-UP OF BREAKING WAVES

V-4. 1 Bore Run-Up Theory.

In a sequence of papers [Ho and Meyer (1962); Shen and Meyer

(1963 a, b); Ho, et al. (1963)], the problem of the climb of a bore on a

beach is analyzed, based on the long wave equations. One of the con-

clusions reached for the case of long surf on a uniformly sloping beach

is that the bore collapses when it reaches the shoreline and the run-up

is given by u 0 2/Zg, in which u = the horizontal velocity at the shoreline

at the instant the bore reaches the shore, and g = the gravitational

acceleration. The value of u depends on the initial bore characteristics0

and the characteristics of the beach. In these papers no simple method

is given for the computation of this velocity. Whitham (1958) has proposed

a simple approximation which can be used to calculate the bore behavior

before it reaches the beach, by applying the equation for the forward

moving bore characteristic line to the flow quantities just behind (i. e.

on the seaward side of) the bore. Coupled with the bore equations

(conservation of mass and momentum across the bore) this method

yields a first-order ordinary differential equation for the bore strength

as a function of depth. Thus, when the bore strength is known at one

point, it can be determined at any other point. In particular, the bore

strength (and hence the value of the velocity u° at the moment the bore

reaches the shoreline) may be determined. From this, the run-up,

R = u /Zg can be calculated.

Keller, Levine, and Whitham, (1960) checked the accuracy of Whitham's

approxinmtion by comparing certain cases with numerical solutions

obtained by integrating the nonlinear shallow water equations by finite

differences with good agreement.

It must be pointed out however, that this calculation is based on many

assumptions, and cannot be applied in practice without substantial re-

servation. In particular, friction effects have been neglected, as well
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as the vertical component of velocity at the free surface which tends to

infinity. The Whitham approximation also ignores the slope of the wave

behind the bore, which can substantially influence the run-up.

Lastly, the run-up is independent of the beach slope, which can be true

only if the bore height decreases seaward from the bore front.

V-4.2 Run-Up of Nonsaturated Breakers

The nonsaturated breaker theory discussed in Sectior. IV-4. 2 provides

an approximate means of determining whether or not run-up will be

significant for breaking waves on a gentle slope. Keinterpreting the

conclusions leading from Eq. IV-12,

1. If S < 0. 38 f, then the wave never bre-ks. All the energy

is dissipated by bottom frict -n. No run-up is experiencLd.

Actually, viscous dissipation should then be taken into

account near the shore.

2. When 0. 38f <S < 0.38 f + 0. 02, the wave breaks as a

spilling breaker and the rate of energy dissipated by

the breaker increases as the bottom slope increases.

All the wave energy is dissipated before reaching the

shoreline. There is practically no run-up; however, a

small rise of mean water level on the shore does exist

as a result of mass transportation and the momentum

of the breaker.

3. When S > 0.01 or thereabouts, the breaker becomes

saturated and becomes a fully developed bore, and run-

up is to be expected.

An interesting implicatior of this theory is that there is a maximum

amount of energy which a solitary wave may carry towards the shore.

If the depth decreases, the excess energy must be dissipated by

breaking. The fact that the breaker may be saturated implies that

there is also a maximum amount of energy which can be dissipated by

breaking. If there is more energy available, it will be carried along

(as a bore, instead of a spilling breaker) and the excess will cause run-up.
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The theory of nonsaturated breakers has recently been extended to in-

clude mass transport and the wave set up, so that it satisfies the law of

continuity and the momentum theorem (LeMe'haute, et al., 1968).

On a gentle slope (S < 0. 01) which steepens near shore (0. 1 < S < 0. 3),

the greatest run-up will be produced by a (solitary) wave which just

exceeds the breaking criterion (H = 0. 78h) at the point where S r0. 0].

All larger waves will break earlier, dissipating their excess energy as

spilling breakers, such that the same run-up will result. All smaller

waves will break later on a steeper siope, and the run-up will be smaller.

V-4. 3 Numerical Methods

When the method of characteristics is applied to the motion of a bore

propagating to the shore, it is found that the bore height tends to zero

on reaching the shoreline. This may be shown rigorously on the basis

of the long wave equations (Keller, Levine, and Whitham, 1960). The

run-up then consists of the further propagation of a sheet of water up

the beach with zero thickness at the leading edge. From a physical

point of view, this description implies very large frictional resistance

at the leading edge. Hence friction cannot be neglected for evaluating

the run-up. This theory also leads to the contradictory requirement that

the bore collapses at the shoreline, as a result oi neglecting the vertical

component of velocity and vertical acceleration. It also requires that,

in case of collapse, both should tend to infinity at zero depth. For

these reasons, the theory appears to be invalid on purely physical

premises.

LeMehaut4 and Moore (1965) have also used the method of characteristics,

where friction was included, but without resorting to the Whitham approxi-
mation. The particle velocity at the waterIs edge as it advances up the

(dry) beach slope was assumed to be proportional to the bore propagation

speed.

By this method the :'un-up, due to various kinds of solitary waves
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travelling over several bottomn slopes, was calculated, giving rise

successively to spilling breakers and bores. Some of their results

are shown in Fig. V-9, where the run-up is given as a function of

the ratio F = f/A2 of the assumed friction factor to the proportionality

coefficient A relating particle velocity to bore speed.

It is concluded that the run-up of breaking waves has been determined

by theory only for the case of solitary waves. The problem becomes in-

creasingly difficult as the wave period decreases (-r as the wave steep-

ness increases) due to the influence of the backwash on the following

wave. Because the backwash causes more energy dissipation in the

bore, wave run-up decreases as the wave steepness increases. However,

on the continental shelf, backwash is negligible and the solitary wave

results should be adequate, although most of them have yet to be experi-

mentally verified.
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V-5 EXPERIMENTAL INVESTIGATIONS

Relatively few experiments have been conducted on the run-up of

breaking waves per se. Probably the most extensive study is that of

Savage (1959) for periodic waves incident on relatively steep slopes

(0.03 < S < oo), and included both non-breaking and breaking waves, with

no distinction between them. These results were later analyzed by

Van Dorn (1966), who found that the data were clearly divisib'_e according

to whether or not they satisfied the breaking criterion of Hunt (Eq. IV-4),

and that the run-up of breaking waves closely obeyed Hunt's empirical

formula

R 2. 3s(H/z -0
H -= fl2-

where H is the wave height in the uniforrm-depth section of the wave

channel.

This relationship is compatible with the fact that the wave dissipation

mechanism is fully turbulent, i. e. , proportional to the square of velocity

which is itsdlf approximately proportional to the square of the wave height.

Such a relationship should not hold when waves of small steepness break

over very gentle slopes because the viscous dissipative mechanism has
more relative importance. Thus this formula, based on experimer, tal
data, should not be extrapolated to waves of small steepness over very

gentle slopes.

Additionally, there have been a number of run-up studies with leading

waves of a wave train, of which the most extensive were those of Kaplan

(1955) and Hall and Watts (1953). These results are presented as power

functions of H/L and H/h, respectively, which make them difficult

to interpret.

Van Dorn also found that the run-up of non-breaking waves reported by

Savage was consistent with the small amplitude theory of Keller, provided
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that the effect of finite height is included. Recently, experiments for

wave run-up of dispersive wave trains were performed at NCEL (Jones,

1968). The results indicated that the relative run-up was smaller than

the results calculated by Miche's formula.

Additional wave channel experiments with periodic non-breaking waves

on small slopes (0. 1 < S < 0. 03) have been reported by Le Mehaute,

et al. (1967), qualitatively verifying the theoretical curves given in

Figs. V-I, V-2 and V-3, although for the smallest slopes the observed

run-down exceeded the run-up, suggesting that frictional dissipation in

the thin leading wave edge may be a limiting factor in such experiments.

However, contradictory observations have been reported which indicate

that the run-up is greater than the run-down (Wallace and Baird, 1968).

The reason for this is not known.

Recently, experiments for measuring wave run-up in an idealized three-

dimensional bay have been performed at Tetra Tech (Hwang, et al., 1968).

As shown in Fig. V-10, the bay is S-shaped with a sloping beach; the

beach slope is 1/5 and everywhere perpendicular to the local shoreline.

This arrangement, with a convex shoreline at the entrance and a concave

region at the rear of the bay, is adjacent to the tank wall and lvhKce

represents, by symmetry, half of a bay with general features sim.lar

to many natural bays. The results of experiments are shown in Fig. V.. 1 1.

As shown in that figure, the relative run-up at different locations with the

same beach slope may vary from a value less than 0.7 to a value of 13.

It is also shown that the relative run-up is strongly depzendent on wave

period. The run-up at locations 1, 10 and 17 on thc same geometry has

also been calculated from Miche's formula with refraction correction

as shown in F.g. V-12. These values are considerably smaller than those

obtained from the measurements. Thus, it demonstrates that when the

shoreline includes bays one has to take into account the oscillation of

the bay.

Experiments to measure wave run-up in the field were performed at
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Mono Lake in 1965 and 1966 (Rooke, et al, 1967, Wallace and Baird,

1968). In 1965 the run-up was measured on a relatively simple beach

condition. These experiments indeed proved that the wave run-up

obtained by extrapolation of what is obtained in tsunami waves cannot

give a reliable estimate of the effect of explosion waves. As most of

the energy is dissipated before the waves reach the shoreline, it is

evident that no catastrophe of damage by flooding can result from ex-

plosion waves as was initially feared. These experiments proved that

wave run-up due to explosion waves is much smaller as compared to

relative run-up of tsunami waves.

A formal prediction based on these assumptions was made (LeMebau-,e`,

et al. , 1965) and, as a matter of >ct, the maxiimav wave - 'i-up pre-

diction was even lower by 50" to '. hat observed in the tezL This dis-

crepancy was largely due to the inaccuracy fu th• •'edich a, in deep

water wave trains. In 1966, experiments were perfornmed in a complex

geometry with shorelines containing large boulders and small b•3 J. The

experimental results, compared to the prediction, appear to be somewhat

improved. However, the predicted results were, in general, larger than

the observed results (LeMe'haute', et al. , 1966, and Wallace and Baird,

1968).

The problem of prediction of leading wave run-up has been subjected to

discussion due to the fact that the observed results do not fit the prediction.

The difficulties in predicting the run-up of the leading wave are not only

due to the difficulty in predicting the run-up of the leading wave itself,

but also due to the fact that the scaling law for wave prediction, which is

established for maximum wave amplitude, is not adequate for prediction

of the leading wave.
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VI-1 INTRODUCTION AND GENERAL REMARKS

Since harbor or bay oscillations may enhance the wave run-up and

damage moored ships, it is well to consider in some detail the nature

and practical importance of harbor resonance, and to recount some

of the important progress made by earlier investigators.

The occurence of resonance in harbors is fundamentally due to the

fact that waves arriving at a widening or narrowing (or at a depth

increase or decrease) are partially reflected. Consider, for example,

a rectangular harbor open to the sea. Waves arriving within the harbor

are reflected seaward by the rear boundary; these outgoing waves upon

reaching the harbor entrance are partially reflected by the sudden

widening with the net result that part of the wave energy which got in

does not get back out. This trapping of energy by the h'rbor leads

to resonance if the phases of the various incident and reflected waves

happen to be such that reinforcement occurs. In this case, the am-

plitude of oscillation may grow, within the harbor, to values far

greater than those incident. At some stage of growth, however, energy

dissipation equals energy trapping and the oscillation amplitude reaches

its maximum. This stabilizing dissipation is of four main forms:

wave radiation seaward (usually dominant); wave breaking within the

harbor when the oscillation exceeds the breaking limit; frictional

effects at the bottom; and wave absorption on the bounding beaches.

The problems of developing a practical calculation procedure applicable
to these processes, already difficult, are compounded by the facts that
harbors are usually of complex shape and that incident waves are never

periodic. Irregularity of shape causes complicated reflections of the

waves within the harbor so that evein for periodic inpult the: agitation

may appear highly irregular. The response to iandom sea or swell

or to a dispersive wave train generated by a localized disturbance is

still worse. II"'rthcrrnore, o•scilations may be induced by other rnechanisn-±s
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such as fluctuations in atmospheric conditions, currents moving past the

entrance which generate a series of alternating vortices, and even ship

transit in and out of the harbor. It is no wonder, then, that taken in

its entirety the problem of harbor* resonance is intimidating.

Yet, solutions must be found since the harbor resonance problem is of

very great practical importance in coastal engineering. This is so

since it is associated with the ship mooring problem. It is well known

that harbor oscillations of only a few inches rr-ay excite large motions

in ship-mooring systems causing mooring lines to break, and ships

to collide with adjacent structures. To minimize such events is the

goal of narbor and breakwater design and for that purpose one must

be able to determine harbor response characteristics.

Analytical studies in this area are, for the most part, quite recent.

McNown (1952) determined the resonant frequency of a circuiar harbor

with a small opening under the assumption that the water surface

remains essentially horizontal; a similar approach was applied by

Kravtchenko and McNown (1955) to the rectangular harbor. Miles and

Munk (1961) considered harbors of arbitrary shape and formulated an

integral equation describing the agitation within the harbor by matching

conditions inside and outside the harbor at the entrance. But they im-

posed the restrictions of narrow opening, and slim and rectangular harbor

in order to obtain analytical expressions for the resonant condition and

maximum amplification. Ippen and Goda (1963) applied Fourier trans-

formation methods and obtained the solution of the rectangular harbor.

The results werc compared with a series of experiments. For long

harbors, the agreement between theory and experiment was good except,

of course, at the resonance point where viscous dissipation is important

and the experiments bccomi' difficult. Biesel and LeMchaute'(1955, 1956)

and LeMe'hauth (1960, 1H61, 1902) presented an interesting approach in

the solution of re6:angular harbor under various types of entrance con-
ditiorns through the use of the theory of complex numbers. Through

this method, the foilowving results were found:
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1. The smaller the harbor entrance width, the smaller the

possibility of resonance. However, the resonance peak,

if reached, is then very high, and its height increases as

the width of the opening decreases.

2. Wide open bays and harbors always amplify the incoming

wave agitation. However, the resonance peak is flatter.

3. Wave energy absorbers are efficient in cutting peak
resonance in enclosed harbors. They are less efficient

in wide open harbors.

Most recently, Leendertse (1967) has developed a numerical procedure

to determine the response of basins to long waves, elevation at open

boundaries being prescribed.

All of the foregoing studies suffer to some degree from various de-

ficiencies; either they are applicable only to idealized shapes or matching

conditions at the harbor entrance are required.

Advances have been made recently in the analysis of the harbor problem.

Harbors of arbitrary shape with constant depth have been solved by
Hwang and Le Mehaute (1968). The method they proposed has overcome

the assumption of conditions at the entrance, which has been the major

problem in previous analytical studies. Because of its importance to

the mooring and run-up problems. this method is now summarized.
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VI-2 THEORETICAL DEVELOPMENTS

VI- 2 1 Formulation of the Problem

Assuming that the fluid is inviscid and incompressible, there exists

a velocity potential f(x, y, z; t) which satisfies the Laplace equation

V2 4= 0 (VI- 1)

throughout the flaid contained within the boundary surfaces as ;hown

in Fig. VI.,1. If the wave is assumed to be of small amplitude, the

velocity term in the Bernoulli equation may be neglected. Thus the
governing dynamic boundary condition on the free surface becomes

(see Stoker, 1965)

= at z = 0 (VI-2)g at

where Ti is the wave elevation and g is gravitational acceleration.

The linearized kinematic condition at the free surface follows from

the fact that surface water par'ticles stay on the surface and is ex-

pressed in the form

at z 0 (VI-3)

The condition on the fixed boundary surface is that the velocity normal

to the surface equals zero; that is

a(VI- 4)

on the boundai y

Since we are dealing with unifornm water depth, h, the condition at the
* I 'bottom is simply
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Figure VI- I A Schematic Drawing of the Harbor
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0 atz=-h (VI.-5)

Finally, the condition at infinity is that

S=0 (VI- 6)

where # is prescribed (input).

The above equations complete the formulation of the problem of

oscillation in harbors of arbitrary shape.

VI-2. 2 Ana!ytic Solution

Since the water depth is uniform, we may assume that the velocity

potential is a product of functions of x and y, z, and t, such as

(x, y, z;t0 CP(x,y) Z(z) e (VI- 7)

where W is the angular frequency.

Substituting the above expression into the Laplace equation, we have

+ -O 0 (VI 8)
2 2 Z dz

After 3eparating the functions of x and y, and z in Eq. (VI-,8), and

equating them to a constant, say k 2 , we have

CD + 22 + k2 CP 0 (VI-9)

and

2z 2
-)z2 k Z = 0 (VI- 10)

y h :here k is i,. constant which is related to the frequency
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The solution of Eq. (VI - 10) is simply

Z(z) Clcosh kz + C sinh kz (VI- 11)
2

The constants C1 and C2 are related to each other by

C2 = C sinh kb (VI- 12)

which is obtained from the bottom boundary condition

aZ
8z = 0 at z -h (VI- 13)

resulting from the substitution of Eq. (VI-7) into Eq. (VI-5).

After substituting Eq. (VI-12) into Eq. (VI-Il), we have

C cosh k (z+h)
Z(z) = cosh kh (VI-14)

The constant C is determined from the free surface condition

_ jiwot iu~t
1.- 1 1 _ C1 (x,y) e = A TP(x,y) e (VI-15)

C
where A - g is the wave amplitude. Thus we haveg

Z(z) = A g cosh k (z+h) (VI-16)
cosh kh ( 16

The constant, k, is a wave number, and is related to the angular

frequency, Lu, and the water depth, h, through the kinematic boundary

condition at the free surfacL (see Eq. VI-3).

Substitutipg Eqs. (VI- 7 ), (VI- 15) and (VI- 16) into Eq. (VI-3) we obtain

* 2w g k tanh k h (VI- 17)
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The problem now is to obtain the solution of Eq. (VI-9) with the boundary

cond.\tion

- 0 on the solid boundary, ( (VI-18)

which is obtained from the substitution of Eq. (Vt-7) into Eq. (VI.-4),

and the prescribed condition,

S= cPo at infinity, (VI - 19)

where CPo represents the incoming wave.

For a straipht-crested standing wave at infinity with the crest at the harbor

at an angle p as shown in Fig. VI-2, the wave form is sim-ply

11= ACPo eiwt =A cos kx' eitt (VI-z0j

where x' is the coordinate measured perpendicular to the wave front,

and is rotated an angle $ from the x axis. Since

x•= x cos • + yr sins (VI- 21)

we have

= cosk(x cos + y sin) (VI -Z2)

If the wave front propagates directly toward the shore, 8 is equal to

zero, so that

q)o = cos kx (VI-23)

For a standing wavc of unit amplitude at infinity, the solution of Weber's

equation, Eq. (VI-9), together with the bountary conditions, Eq. (VI-18)

and (VI- 19), can be found through the introduction of a source function

(, r) along the boundary S, where r, and il refer to coordinates on the

boundary.
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Thus the value of CP(x, y) at any point P(x, y) is equal to the sum of

two parts; one is the influence from infinity, CPo(x, y), and the othe'r is

the contribution of the source distribution, that is, the scattered wave

caused by the presence of the boundary

Sjd§ Q(• G G(x, y; ?, ) (VI -24)

where G(x, y; 9, 11) is the Green's function and Q(9, TI) is the unknown

source distribution which can be determined from the boundary con-

ditions.

The Green's fumction has to be chosen so that it is the solution of

Weber's ecuation, satsifies the radiation condition at infinity, and

has a singularity at the source point. The Green's function may be deter-

mined easily from Weber's equation in cylindrical coordinates,

that is

Sd(R ) + kOCP= 0 (VI-25)

The solution of this equation involves Bessel functions or Hankel

functions. Since the Hankel function of zero order and first kind has

the following properties

i 1
- 4 •--n (kR) as R -40

and
and -- H ~ rZR J - i(kR + ) as T

it satisfies the requirements prescribed previously. Therefore,

we choose the Green's function to be

G (x,iy; H(1) (kR) (VI-26)

where
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R 2

so that the value of CP(x, y), at any point, P(x, y), is

CP(x' y) = goP(x, Y)+d 9 ) x ;g (VI-2Z7)

The problem now is to determine the strength of the source distri-

bution, (,r) This can be accomplished by applying the boundary

condition of Eq. (V1- 18) which-gives

lirn [-c-- +. ,f d9Q( j) G (x, y; 9 )]=0 (VI-28)

Since the limit is singular inside the integral, it has to be treated

with care.

Considering the contour of integration, as shown in Fig. (VI-3)

Figure VI-3 Contour of Integration

we evaluate the integral in Eq. (VI-28) as follows

{-i§ Q(g, Q~ nx~y r 1) G (x, Jy;Q~ri ~x y~

(VI - 29)

140



where the sign, refers to the principal value. Since the Hankel

function can be approximated by

HM (kR) -• I- £n (kR), as R 40 (VI-30)o 2TT

the second integral of the right hand side of (VI-29) may be integrated

analytically. We have

im _f d§ (,Q ) G(x, y; T)

0

=ir (t•nkR) Rd8 = (VI-31)li (,T -YR 2R-+O-

Thus the integral equation becomes

+4 L n dSQ( d§ G (kR) C y) (VI-32)
Sn

where

o (kR) H(1 ) (kR)n (- n o

The above equation can not be evaluated analytically. A numerical

method for evaluating the source distribution Q(•, 1 ) has been developed

by Hwan$ and Le Mehaute (1968).
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VI-3 CALCULATION OF VELOCITY AND AMPLIFICATION FACTOR

Once the source strength Q has been calculated the value of P (x, y) can

be evaluated by substituting values of Q into Eq. (VI-27). Thus the

velocity potential can be calculated from Eq. (VI-7).

(x,Y, z; t) (x, y) cosh k(z+h) iUt
iW cosh kh e (VI-33)

The velocity components at any location, P (x, y, z), can be calculated as

611: si Ttq ~ 0r]cosh k(z+h) V-4

r -. ~g ~ cos wt - •-sin :Jt(VI-34)
= x W X a [•x cosh k h

6 1 r _ - a c- , r cosh k(z+b)S06-y si cosh k h (VI-35)

where the subscripts i and r refer to the imaginary and real parts of

the complex values and u, v are horizontal and vertical velocity components.

The velocity field corresponding to Wt = 90 for the harbor of Port

Hueneme is calculated by use of this method and is plotted in Fig. VI-4.

The amplification factor at any point P (x, y) is equal to the ratio of maxi-

mum wave height obtained at point P (x, y) to the wave height at infinity.

The maximum wave height at infinity is A. However, the maximum

wave amplitude at point P (x, y) is

9 = "A 'cp(xy)

Thus the amplification factor at any point P (x, y) is simply

A - _ kIp(x,y)f (VI-36)

p A

and the result of this calculation is shown in Fig. VI-5.

Figures VI-6through VI-8 are results extracted from a study made by
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Tetra Tech for the Atomic Energy Commission (Hwang, et al. , 1968).

Figure VI-6 shows Barbers Point Harbor, Hawaii, while Fig. VI-7 indi-

cates the response to periodic waves by the harbor at locations 1, 2, 3

and 4 as indicated in the figure. Figure VI-8 shows the response curve

at location 4 together with the first amplitude envelopes resulting from

100 KT, 5 MT and 25 MT nuclear explosions near Johnston Island. The

method of calculation has been outlined in several reports (Hwang, et al.

]968, Hwang and LeMghaute*, 1968).

It is necessary to point out that viccous dissipation and the effects of

water depth and large wave amplitude are not considered in this calcu-

lation and will certainly tend to decrease the peak resonance amplitude.

Further research on these effects is necessary in order to obtain mzore

accurate predictions.
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CHAPTER VII

A SUMMARY FOR MAKING ROUGH ESTIMATES

OF WAVE CHARACTERISTICS
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VIL A SUMMARY FOR MAKING ROUGH ESTIMATES OF WAVE

CHARACTERISTICS

Chart VII- 1, presented on the following page, summarizes the calculation

procedures for explosion-generated waves and their propagation and

transformation. These calculations are quite time consuming, and

necessary only when detailed information is required. In some cases,

"a quick estimation is required for operational purposes. For this reason

"a simplified method which gives only the properties of the maximum

waves is given.

As shown in Fig. VII- 1, a nuclear explosion of yield Y is assumed to

occur in deep water off the continential slope. The explosion generates

a wave train propagating in all directions. The maximum wave amplitude

Timax of the wave train in deep water is related to the distance from

the explosion, r, and the yield, Y, as follows (see Eq. NI-23):

flmax =(18 y 0 . 54/r)ft., [r] = ft, [Y] = lbs. TNT (VU-l)

assuming that the detonation occurs at the upper critical depth. The

wave period, T, of this maximum wave is (see Eq. 11-25)

"r I 63y 0 15
T = 1.63Y sec. [Y] = lbs. TNT (VII-2)

As the maximum wave propagates towards the continential shelf, its

amplitude decreases as a result of radial spreading, until shoaling and

refraction effects become important. The calculation of wave amplitude

including these effects is rather complicated as discussed in section

Iii-3. Z. Here, for simplicity, we assume that the explosion is rather

far away from shallow water so that the waves are almost two-dimen-

sional when they arrive. Thus we may calculate the maximum wave

amplitude Tmax by use of Eq. VII-1, until the water depth, h, is

equal to one quarter of the wave length, ¼L nax (we aasume that shoaling

becomes important when h-- ¼Lmax). From there on, the maximum wave

height may be calculated by simply multiplying by the shoaling coefficient
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CHART VII- 1

SUMMARY CHART

Deep Water Wave
Generation

Section H-2. 3

Deep Water Wave
Pr opagation

Section IU-I

Wave Transformation
on Continential Slope

and Shelf
Section I11-3.2

Breaking Criteria
Section IV-4

Non-Breaking Wave Breaking Wave

Propagation on Slop- Propagation

ing Beach Section IV-6

Section I1-3. 2 Extent of Breaking
Region

Section 111-3.2
Duration of Wave

Breaking

Section 11I-3.2

Run-up of Non- Harbor or Basin Breaking Wave
Breaking Waves Oscillation Run-Up

Sections
Section V-3 Chapter VI V-4 and V-5

151

- I



00
z4

~IA

0 bSv

1525

-A-2-56



11IS

Sc =r as given in Fig. Ill-I. Refraction must also be accounted

for, ancmay be determined from linear theory to a good approximation.

As the wave increases its amplitude by shoaling to the point that the

water depth is insufficient to transmit the wave energy, the wave will

break; this occurs at the intersection of the curve of wave height and

the line of breaking index as shown in Fig. VII- 1. After the wave breaks,

it propagates towards the shore, as described by the non-saturated

breaker theory.

There is no simple formula to estimate the lateral extent of the breaking

region. However, previous calculations (Le Me~haute", et al., 1967) in-

dicate that it is typically approximately equal to two times the distance

between shore and the point of breaking inception.

The estimation of wave run-up is extremely difficult because of the

usually complicated shore geometry. However, if the shoreline is

assumed locally straight one may estimate the run-up according to the

flow chart (VII-2) on the following page. Itis based on available theories and

empirical results discussed previously, and is drawn in such a way that

it is reasonably simple to use and covers a wide class of possible situations.

As such it cannot always be expected to give as reliable a result as the

best that can be done by an experienced person analyzing a particular

problem. It ia only intended to be a guide for a reasonable estimate of

the run-up.

The basic problem involves the following:

Given: Hi, the incident wave height,

L., the incident wave length,

'T, the incident wave period obtained from Eq. 11-31, and

h, depth of bottory, profile at which the above values

are given

To find: The run-up, R.
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CHART VII-2

V RUN-UP CALCULATION FLOW CHART
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The first question that must be answered is whether the wave is preceded

and followed by more waves with the same properties. If it is, the wave

may be classified as purely periodic, to which most of the theories

and experiments apply. If, however, it is a member of a wave package,

the theories and experiments described before cannot, strictly speaking,

be applied. Nevertheless, in view of the fact that in most cases the pro-

perties of the waves vary only slowly from one to the next within the

wave train, one may apply them even in this case provided the wave

under consideration is not very near the front or tail of the wave package.

For the leading wave of such a wave package, either the Carrier and

Hwang theory (if it does not break) or Kaplan's experimental results

may be applied. One must be careful, however, of the definition of wave

length in such a case. For purposes of estimating the run-up, the

succeeding waves in such a wave train may be considered as periodic

in character. If the succeeding wave breaks, the run-up may be cal-

culated by use of Fig. VII-Z, which is obtained from extrapolation

of Saville's observations (BEB TR-4).

For evaluation of wave run-up inside a bay, the procedure is also outlined

in the flow chart. However, the method involved is rather complex, so

that no straightforward formulas can be given to obtain the wave run-up.

Estimates of run-up in such conditions require considerable understanding

of the nature of the harbor or bay response.

Finally, it is important to point out here that no beaches are perfectly

dimensional. Thus the run-up observed may exhibit a large variation

from time to time and from location to location for relatively uniform

incoming waves. Such random behavior has not yet been tackled with an

analytical approach. Observations at Hawaii and Mono Lake indicate

that the distribution of all run-up data about the average run-up appears

to follow a log normal distribution.
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